|
import torch |
|
import torch.nn as nn |
|
|
|
from engine.BiRefNet.config import Config |
|
from engine.BiRefNet.models.modules.aspp import ASPP, ASPPDeformable |
|
|
|
config = Config() |
|
|
|
|
|
class BasicDecBlk(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64): |
|
super(BasicDecBlk, self).__init__() |
|
inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64 |
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) |
|
self.relu_in = nn.ReLU(inplace=True) |
|
if config.dec_att == "ASPP": |
|
self.dec_att = ASPP(in_channels=inter_channels) |
|
elif config.dec_att == "ASPPDeformable": |
|
self.dec_att = ASPPDeformable(in_channels=inter_channels) |
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) |
|
self.bn_in = ( |
|
nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() |
|
) |
|
self.bn_out = ( |
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
x = self.bn_in(x) |
|
x = self.relu_in(x) |
|
if hasattr(self, "dec_att"): |
|
x = self.dec_att(x) |
|
x = self.conv_out(x) |
|
x = self.bn_out(x) |
|
return x |
|
|
|
|
|
class ResBlk(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=None, inter_channels=64): |
|
super(ResBlk, self).__init__() |
|
if out_channels is None: |
|
out_channels = in_channels |
|
inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64 |
|
|
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) |
|
self.bn_in = ( |
|
nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() |
|
) |
|
self.relu_in = nn.ReLU(inplace=True) |
|
|
|
if config.dec_att == "ASPP": |
|
self.dec_att = ASPP(in_channels=inter_channels) |
|
elif config.dec_att == "ASPPDeformable": |
|
self.dec_att = ASPPDeformable(in_channels=inter_channels) |
|
|
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) |
|
self.bn_out = ( |
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
) |
|
|
|
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
_x = self.conv_resi(x) |
|
x = self.conv_in(x) |
|
x = self.bn_in(x) |
|
x = self.relu_in(x) |
|
if hasattr(self, "dec_att"): |
|
x = self.dec_att(x) |
|
x = self.conv_out(x) |
|
x = self.bn_out(x) |
|
return x + _x |
|
|