|
import torch.nn as nn |
|
|
|
|
|
def build_act_layer(act_layer): |
|
if act_layer == "ReLU": |
|
return nn.ReLU(inplace=True) |
|
elif act_layer == "SiLU": |
|
return nn.SiLU(inplace=True) |
|
elif act_layer == "GELU": |
|
return nn.GELU() |
|
|
|
raise NotImplementedError(f"build_act_layer does not support {act_layer}") |
|
|
|
|
|
def build_norm_layer( |
|
dim, norm_layer, in_format="channels_last", out_format="channels_last", eps=1e-6 |
|
): |
|
layers = [] |
|
if norm_layer == "BN": |
|
if in_format == "channels_last": |
|
layers.append(to_channels_first()) |
|
layers.append(nn.BatchNorm2d(dim)) |
|
if out_format == "channels_last": |
|
layers.append(to_channels_last()) |
|
elif norm_layer == "LN": |
|
if in_format == "channels_first": |
|
layers.append(to_channels_last()) |
|
layers.append(nn.LayerNorm(dim, eps=eps)) |
|
if out_format == "channels_first": |
|
layers.append(to_channels_first()) |
|
else: |
|
raise NotImplementedError(f"build_norm_layer does not support {norm_layer}") |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class to_channels_first(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 3, 1, 2) |
|
|
|
|
|
class to_channels_last(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 2, 3, 1) |
|
|