|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
sys.path.append("./") |
|
sys.path.append("./engine") |
|
sys.path.append("./engine/pose_estimation") |
|
import copy |
|
|
|
import einops |
|
import numpy as np |
|
import roma |
|
import torch |
|
import torch.nn as nn |
|
from blocks import ( |
|
Dinov2Backbone, |
|
FourierPositionEncoding, |
|
SMPL_Layer, |
|
TransformerDecoder, |
|
) |
|
from pose_utils import ( |
|
inverse_perspective_projection, |
|
pad_to_max, |
|
rebatch, |
|
rot6d_to_rotmat, |
|
undo_focal_length_normalization, |
|
undo_log_depth, |
|
unpatch, |
|
) |
|
from torch import nn |
|
|
|
|
|
def unravel_index(index, shape): |
|
out = [] |
|
for dim in reversed(shape): |
|
out.append(index % dim) |
|
index = index // dim |
|
return tuple(reversed(out)) |
|
|
|
|
|
class Model(nn.Module): |
|
"""A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.)""" |
|
|
|
def __init__( |
|
self, |
|
backbone="dinov2_vitb14", |
|
pretrained_backbone=False, |
|
img_size=896, |
|
camera_embedding="geometric", |
|
camera_embedding_num_bands=16, |
|
camera_embedding_max_resolution=64, |
|
nearness=True, |
|
xat_depth=2, |
|
xat_num_heads=8, |
|
dict_smpl_layer=None, |
|
person_center="head", |
|
clip_dist=True, |
|
num_betas=10, |
|
smplx_dir=None, |
|
*args, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.img_size = img_size |
|
self.nearness = nearness |
|
self.clip_dist = (clip_dist,) |
|
self.xat_depth = xat_depth |
|
self.xat_num_heads = xat_num_heads |
|
self.num_betas = num_betas |
|
self.output_mesh = True |
|
|
|
|
|
self.backbone = Dinov2Backbone(backbone, pretrained=pretrained_backbone) |
|
self.embed_dim = self.backbone.embed_dim |
|
self.patch_size = self.backbone.patch_size |
|
assert self.img_size % self.patch_size == 0, "Invalid img size" |
|
|
|
|
|
self.fovn = 60 |
|
self.camera_embedding = camera_embedding |
|
self.camera_embed_dim = 0 |
|
if self.camera_embedding is not None: |
|
if not self.camera_embedding == "geometric": |
|
raise NotImplementedError( |
|
"Only geometric camera embedding is implemented" |
|
) |
|
self.camera = FourierPositionEncoding( |
|
n=3, |
|
num_bands=camera_embedding_num_bands, |
|
max_resolution=camera_embedding_max_resolution, |
|
) |
|
|
|
|
|
self.camera_embed_dim = self.camera.channels |
|
|
|
|
|
self.mlp_classif = regression_mlp( |
|
[self.embed_dim, self.embed_dim, 1] |
|
) |
|
|
|
|
|
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) |
|
|
|
|
|
self.nrot = 53 |
|
dict_smpl_layer = { |
|
"neutral": { |
|
10: SMPL_Layer( |
|
smplx_dir, |
|
type="smplx", |
|
gender="neutral", |
|
num_betas=10, |
|
kid=False, |
|
person_center=person_center, |
|
), |
|
11: SMPL_Layer( |
|
smplx_dir, |
|
type="smplx", |
|
gender="neutral", |
|
num_betas=11, |
|
kid=False, |
|
person_center=person_center, |
|
), |
|
} |
|
} |
|
_moduleDict = [] |
|
for k, _smpl_layer in dict_smpl_layer.items(): |
|
for x, y in _smpl_layer.items(): |
|
_moduleDict.append([f"{k}_{x}", copy.deepcopy(y)]) |
|
self.smpl_layer = nn.ModuleDict(_moduleDict) |
|
|
|
self.x_attention_head = HPH( |
|
num_body_joints=self.nrot - 1, |
|
context_dim=self.embed_dim + self.camera_embed_dim, |
|
dim=1024, |
|
depth=self.xat_depth, |
|
heads=self.xat_num_heads, |
|
mlp_dim=1024, |
|
dim_head=32, |
|
dropout=0.0, |
|
emb_dropout=0.0, |
|
at_token_res=self.img_size // self.patch_size, |
|
num_betas=self.num_betas, |
|
smplx_dir=smplx_dir, |
|
) |
|
|
|
print(f"person center is {person_center}") |
|
|
|
|
|
def set_filter(self, apply_filter): |
|
self.apply_filter = apply_filter |
|
|
|
def detection( |
|
self, |
|
z, |
|
nms_kernel_size, |
|
det_thresh, |
|
N, |
|
idx=None, |
|
max_dist=None, |
|
is_training=False, |
|
): |
|
"""Detection score on the entire low res image""" |
|
scores = _sigmoid(self.mlp_classif(z)) |
|
|
|
scores = unpatch( |
|
scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N)) |
|
) |
|
pseudo_idx = idx |
|
if not is_training: |
|
if ( |
|
nms_kernel_size > 1 |
|
): |
|
scores = _nms(scores, kernel=nms_kernel_size) |
|
_scores = torch.permute(scores, (0, 2, 3, 1)) |
|
|
|
|
|
idx = apply_threshold(det_thresh, _scores) |
|
if pseudo_idx is not None: |
|
max_dist = 4 if max_dist is None else max_dist |
|
mask = (torch.abs(idx[1] - pseudo_idx[1]) <= max_dist) & ( |
|
torch.abs(idx[2] - pseudo_idx[2]) <= max_dist |
|
) |
|
idx_num = torch.sum(mask) |
|
if idx_num < 1: |
|
top = torch.clamp( |
|
pseudo_idx[1] - max_dist, min=0, max=_scores.shape[1] - 1 |
|
) |
|
bottom = torch.clamp( |
|
pseudo_idx[1] + max_dist, min=0, max=_scores.shape[1] |
|
) |
|
left = torch.clamp( |
|
pseudo_idx[2] - max_dist, min=0, max=_scores.shape[2] - 1 |
|
) |
|
right = torch.clamp( |
|
pseudo_idx[2] + max_dist, min=0, max=_scores.shape[2] |
|
) |
|
|
|
neigborhoods = _scores[:, top:bottom, left:right, :] |
|
|
|
idx = torch.argmax(neigborhoods) |
|
try: |
|
idx = unravel_index(idx, neigborhoods.shape) |
|
except Exception as e: |
|
print(pseudo_idx) |
|
raise e |
|
idx = ( |
|
pseudo_idx[0], |
|
idx[1] + pseudo_idx[1] - max_dist, |
|
idx[2] + pseudo_idx[2] - max_dist, |
|
pseudo_idx[3], |
|
) |
|
|
|
elif idx_num > 1: |
|
|
|
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask]) |
|
else: |
|
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
assert idx is not None |
|
|
|
scores_detected = scores[ |
|
idx[0], idx[3], idx[1], idx[2] |
|
] |
|
|
|
scores = torch.permute(scores, (0, 2, 3, 1)) |
|
return scores, scores_detected, idx |
|
|
|
def embedd_camera(self, K, z): |
|
"""Embed viewing directions using fourrier encoding.""" |
|
bs = z.shape[0] |
|
_h, _w = list(z.shape[-2:]) |
|
points = ( |
|
torch.stack( |
|
[ |
|
torch.arange(0, _h, 1).reshape(-1, 1).repeat(1, _w), |
|
torch.arange(0, _w, 1).reshape(1, -1).repeat(_h, 1), |
|
], |
|
-1, |
|
) |
|
.to(z.device) |
|
.float() |
|
) |
|
points = ( |
|
points * self.patch_size + self.patch_size // 2 |
|
) |
|
points = points.reshape(1, -1, 2).repeat(bs, 1, 1) |
|
distance = torch.ones(bs, points.shape[1], 1).to( |
|
K.device |
|
) |
|
rays = inverse_perspective_projection(points, K, distance) |
|
rays_embeddings = self.camera(pos=rays) |
|
|
|
|
|
z_K = rays_embeddings.reshape(bs, _h, _w, self.camera_embed_dim) |
|
return z_K |
|
|
|
def to_euclidean_dist(self, x, dist, _K): |
|
|
|
focal = _K[:, [0], [0]] |
|
dist = undo_focal_length_normalization( |
|
dist, focal, fovn=self.fovn, img_size=x.shape[-1] |
|
) |
|
|
|
if self.nearness: |
|
dist = undo_log_depth(dist) |
|
|
|
|
|
if self.clip_dist: |
|
dist = torch.clamp(dist, 0, 50) |
|
|
|
return dist |
|
|
|
def get_smpl(self): |
|
return self.smpl_layer[f"neutral_{self.num_betas}"] |
|
|
|
def generate_meshes(self, out): |
|
""" |
|
Generates meshes for each person detected in the image. |
|
|
|
This function processes the output of the detection model, which includes rotation vectors, |
|
shapes, locations, distances, expressions, and other information related to SMPL-X parameters. |
|
|
|
Parameters: |
|
out (dict): A dictionary containing detection results and SMPL-X related parameters. |
|
|
|
Returns: |
|
list: A list of dictionaries, each containing information about a detected person's mesh. |
|
""" |
|
|
|
persons = [] |
|
rotvec, shape, loc, dist, expression, K_det = ( |
|
out["rotvec"], |
|
out["shape"], |
|
out["loc"], |
|
out["dist"], |
|
out["expression"], |
|
out["K_det"], |
|
) |
|
scores_det = out["scores_det"] |
|
idx = out["idx"] |
|
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"]( |
|
rotvec, shape, loc, dist, None, K=K_det, expression=expression |
|
) |
|
out.update(smpl_out) |
|
|
|
for i in range(idx[0].shape[0]): |
|
person = { |
|
|
|
"scores": scores_det[i], |
|
"loc": out["loc"][i], |
|
|
|
"transl": out["transl"][i], |
|
"transl_pelvis": out["transl_pelvis"][i], |
|
"rotvec": out["rotvec"][i], |
|
"expression": out["expression"][i], |
|
"shape": out["shape"][i], |
|
|
|
"v3d": out["v3d"][i], |
|
"j3d": out["j3d"][i], |
|
"j2d": out["j2d"][i], |
|
} |
|
persons.append(person) |
|
|
|
return persons |
|
|
|
def forward( |
|
self, |
|
x, |
|
idx=None, |
|
max_dist=None, |
|
det_thresh=0.3, |
|
nms_kernel_size=3, |
|
K=None, |
|
is_training=False, |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Forward pass of the model and compute the loss according to the groundtruth |
|
Args: |
|
- x: RGB image - [bs,3,224,224] |
|
- idx: GT location of persons - tuple of 3 tensor of shape [p] |
|
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space |
|
Return: |
|
- y: [bs,D,16,16] |
|
""" |
|
persons = [] |
|
out = {} |
|
|
|
|
|
z = self.backbone(x) |
|
B, N, C = z.size() |
|
|
|
|
|
scores, scores_det, idx = self.detection( |
|
z, |
|
nms_kernel_size=nms_kernel_size, |
|
det_thresh=det_thresh, |
|
N=N, |
|
idx=idx, |
|
max_dist=max_dist, |
|
is_training=is_training, |
|
) |
|
if torch.any(scores_det < 0.1): |
|
return persons |
|
if len(idx[1]) == 0 and not is_training: |
|
|
|
return persons |
|
|
|
|
|
z = unpatch( |
|
z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N)) |
|
) |
|
z_all = z |
|
|
|
|
|
z = torch.reshape( |
|
z, (z.shape[0], 1, z.shape[1] // 1, z.shape[2], z.shape[3]) |
|
) |
|
z_central = z[idx[0], idx[3], :, idx[1], idx[2]] |
|
|
|
|
|
offset = self.mlp_offset(z_central) |
|
|
|
|
|
K_det = K[idx[0]] |
|
z_K = self.embedd_camera(K, z) |
|
z_central = torch.cat( |
|
[z_central, z_K[idx[0], idx[1], idx[2]]], 1 |
|
) |
|
z_all = torch.cat( |
|
[z_all, z_K.permute(0, 3, 1, 2)], 1 |
|
) |
|
z = torch.cat([z, z_K.permute(0, 3, 1, 2).unsqueeze(1)], 2) |
|
|
|
|
|
loc = torch.stack([idx[2], idx[1]]).permute( |
|
1, 0 |
|
) |
|
loc = (loc + 0.5 + offset) * self.patch_size |
|
|
|
|
|
kv = z_all[ |
|
idx[0] |
|
] |
|
pred_smpl_params, pred_cam = self.x_attention_head( |
|
z_central, kv, idx_0=idx[0], idx_det=idx |
|
) |
|
|
|
|
|
shape = pred_smpl_params["betas"] |
|
rotmat = torch.cat( |
|
[pred_smpl_params["global_orient"], pred_smpl_params["body_pose"]], 1 |
|
) |
|
expression = pred_smpl_params["expression"] |
|
rotvec = roma.rotmat_to_rotvec(rotmat) |
|
|
|
|
|
dist = pred_cam[:, 0][:, None] |
|
out["dist_postprocessed"] = ( |
|
dist |
|
) |
|
dist = self.to_euclidean_dist(x, dist, K_det) |
|
|
|
|
|
out.update( |
|
{ |
|
"scores": scores, |
|
"offset": offset, |
|
"dist": dist, |
|
"expression": expression, |
|
"rotmat": rotmat, |
|
"shape": shape, |
|
"rotvec": rotvec, |
|
"loc": loc, |
|
} |
|
) |
|
|
|
assert ( |
|
rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0] |
|
), "Incoherent shapes" |
|
|
|
if not self.output_mesh: |
|
out.update( |
|
{ |
|
"K_det": K_det, |
|
"scores_det": scores_det, |
|
"idx": idx, |
|
} |
|
) |
|
return out |
|
|
|
|
|
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"]( |
|
rotvec, shape, loc, dist, None, K=K_det, expression=expression |
|
) |
|
out.update(smpl_out) |
|
|
|
|
|
if is_training: |
|
return out |
|
else: |
|
|
|
for i in range(idx[0].shape[0]): |
|
person = { |
|
|
|
"scores": scores_det[i], |
|
"loc": out["loc"][i], |
|
|
|
"transl": out["transl"][ |
|
i |
|
], |
|
"transl_pelvis": out["transl_pelvis"][i], |
|
"rotvec": out["rotvec"][i], |
|
"expression": out["expression"][i], |
|
"shape": out["shape"][i], |
|
|
|
"v3d": out["v3d"][i], |
|
"j3d": out["j3d"][i], |
|
"j2d": out["j2d"][i], |
|
"dist": out["dist"][i], |
|
"offset": out["offset"][i], |
|
} |
|
persons.append(person) |
|
|
|
return persons |
|
|
|
|
|
class HPH(nn.Module): |
|
"""Cross-attention based SMPL Transformer decoder |
|
|
|
Code modified from: |
|
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17 |
|
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_body_joints=52, |
|
context_dim=1280, |
|
dim=1024, |
|
depth=2, |
|
heads=8, |
|
mlp_dim=1024, |
|
dim_head=64, |
|
dropout=0.0, |
|
emb_dropout=0.0, |
|
at_token_res=32, |
|
num_betas=10, |
|
smplx_dir=None, |
|
): |
|
super().__init__() |
|
|
|
self.joint_rep_type, self.joint_rep_dim = "6d", 6 |
|
self.num_body_joints = num_body_joints |
|
self.nrot = self.num_body_joints + 1 |
|
|
|
npose = self.joint_rep_dim * (self.num_body_joints + 1) |
|
self.npose = npose |
|
|
|
self.depth = (depth,) |
|
self.heads = (heads,) |
|
self.res = at_token_res |
|
self.input_is_mean_shape = True |
|
_context_dim = context_dim |
|
self.num_betas = num_betas |
|
assert num_betas in [10, 11] |
|
|
|
|
|
|
|
transformer_args = dict( |
|
num_tokens=1, |
|
token_dim=( |
|
(npose + self.num_betas + 3 + _context_dim) |
|
if self.input_is_mean_shape |
|
else 1 |
|
), |
|
dim=dim, |
|
depth=depth, |
|
heads=heads, |
|
mlp_dim=mlp_dim, |
|
dim_head=dim_head, |
|
dropout=dropout, |
|
emb_dropout=emb_dropout, |
|
context_dim=context_dim, |
|
) |
|
self.transformer = TransformerDecoder(**transformer_args) |
|
|
|
dim = transformer_args["dim"] |
|
|
|
|
|
self.decpose, self.decshape, self.deccam, self.decexpression = [ |
|
nn.Linear(dim, od) for od in [npose, num_betas, 3, 10] |
|
] |
|
|
|
|
|
self.set_smpl_init(smplx_dir) |
|
|
|
|
|
self.init_learned_queries(context_dim) |
|
|
|
def init_learned_queries(self, context_dim, std=0.2): |
|
"""Init learned embeddings for queries""" |
|
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim)) |
|
torch.nn.init.normal_(self.cross_queries_x, std=std) |
|
|
|
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim)) |
|
torch.nn.init.normal_(self.cross_queries_y, std=std) |
|
|
|
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim)) |
|
torch.nn.init.normal_(self.cross_values_x, std=std) |
|
|
|
self.cross_values_y = nn.Parameter( |
|
nn.Parameter(torch.zeros(self.res, context_dim)) |
|
) |
|
torch.nn.init.normal_(self.cross_values_y, std=std) |
|
|
|
def set_smpl_init(self, smplx_dir): |
|
"""Fetch saved SMPL parameters and register buffers.""" |
|
mean_params = np.load(os.path.join(smplx_dir, "smpl_mean_params.npz")) |
|
if self.nrot == 53: |
|
init_body_pose = ( |
|
torch.eye(3) |
|
.reshape(1, 3, 3) |
|
.repeat(self.nrot, 1, 1)[:, :, :2] |
|
.flatten(1) |
|
.reshape(1, -1) |
|
) |
|
init_body_pose[:, : 24 * 6] = torch.from_numpy( |
|
mean_params["pose"][:] |
|
).float() |
|
else: |
|
init_body_pose = torch.from_numpy( |
|
mean_params["pose"].astype(np.float32) |
|
).unsqueeze(0) |
|
|
|
init_betas = torch.from_numpy(mean_params["shape"].astype("float32")).unsqueeze( |
|
0 |
|
) |
|
init_cam = torch.from_numpy(mean_params["cam"].astype(np.float32)).unsqueeze(0) |
|
init_betas_kid = torch.cat( |
|
[init_betas, torch.zeros_like(init_betas[:, [0]])], 1 |
|
) |
|
init_expression = 0.0 * torch.from_numpy( |
|
mean_params["shape"].astype("float32") |
|
).unsqueeze(0) |
|
|
|
if self.num_betas == 11: |
|
init_betas = torch.cat([init_betas, torch.zeros_like(init_betas[:, :1])], 1) |
|
|
|
self.register_buffer("init_body_pose", init_body_pose) |
|
self.register_buffer("init_betas", init_betas) |
|
self.register_buffer("init_betas_kid", init_betas_kid) |
|
self.register_buffer("init_cam", init_cam) |
|
self.register_buffer("init_expression", init_expression) |
|
|
|
def cross_attn_inputs(self, x, x_central, idx_0, idx_det): |
|
"""Reshape and pad x_central to have the right shape for Cross-attention processing. |
|
Inject learned embeddings to query and key inputs at the location of detected people. |
|
""" |
|
|
|
h, w = x.shape[2], x.shape[3] |
|
x = einops.rearrange(x, "b c h w -> b (h w) c") |
|
|
|
assert idx_0 is not None, "Learned cross queries only work with multicross" |
|
|
|
if idx_0.shape[0] > 0: |
|
|
|
counts, idx_det_0 = rebatch(idx_0, idx_det) |
|
old_shape = x_central.shape |
|
|
|
|
|
assert idx_det is not None, "idx_det needed for learned_attention" |
|
|
|
|
|
xx = einops.rearrange(x, "b (h w) c -> b c h w", h=h, w=w) |
|
|
|
queries_xy = ( |
|
self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]] |
|
) |
|
|
|
x_central = x_central + queries_xy |
|
assert x_central.shape == old_shape, "Problem with shape" |
|
|
|
|
|
x_central, mask = pad_to_max(x_central, counts) |
|
|
|
|
|
xx = xx[torch.cumsum(counts, dim=0) - 1] |
|
|
|
|
|
values_xy = ( |
|
self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]] |
|
) |
|
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy |
|
|
|
x = einops.rearrange(xx, "b c h w -> b (h w) c") |
|
num_ppl = x_central.shape[1] |
|
else: |
|
mask = None |
|
num_ppl = 1 |
|
counts = None |
|
return x, x_central, mask, num_ppl, counts |
|
|
|
def forward(self, x_central, x, idx_0=None, idx_det=None, **kwargs): |
|
""" " |
|
Forward the HPH module. |
|
""" |
|
batch_size = x.shape[0] |
|
|
|
|
|
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs( |
|
x, x_central, idx_0, idx_det |
|
) |
|
|
|
|
|
bs = x_central.shape[0] if idx_0.shape[0] else batch_size |
|
expand = lambda x: x.expand(bs, num_ppl, -1) |
|
pred_body_pose, pred_betas, pred_cam, pred_expression = [ |
|
expand(x) |
|
for x in [ |
|
self.init_body_pose, |
|
self.init_betas, |
|
self.init_cam, |
|
self.init_expression, |
|
] |
|
] |
|
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1) |
|
if len(token.shape) == 2: |
|
token = token[:, None, :] |
|
|
|
|
|
token_out = self.transformer(token, context=x, mask=mask) |
|
|
|
|
|
if mask is not None: |
|
|
|
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)] |
|
token_out = torch.concat(token_out_list, dim=0) |
|
else: |
|
token_out = token_out.squeeze(1) |
|
|
|
|
|
reshape = ( |
|
(lambda x: x) |
|
if idx_0.shape[0] == 0 |
|
else (lambda x: x[0, 0, ...][None, ...]) |
|
) |
|
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression] |
|
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression] |
|
pred_body_pose, pred_betas, pred_cam, pred_expression = [ |
|
d(token_out) + reshape(i) for d, i in zip(decoders, inits) |
|
] |
|
|
|
|
|
joint_conversion_fn = rot6d_to_rotmat |
|
|
|
|
|
pred_body_pose = joint_conversion_fn(pred_body_pose).view( |
|
batch_size, self.num_body_joints + 1, 3, 3 |
|
) |
|
|
|
|
|
pred_smpl_params = { |
|
"global_orient": pred_body_pose[:, [0]], |
|
"body_pose": pred_body_pose[:, 1:], |
|
"betas": pred_betas, |
|
|
|
"expression": pred_expression, |
|
} |
|
return pred_smpl_params, pred_cam |
|
|
|
|
|
def regression_mlp(layers_sizes): |
|
""" |
|
Return a fully connected network. |
|
""" |
|
assert len(layers_sizes) >= 2 |
|
in_features = layers_sizes[0] |
|
layers = [] |
|
for i in range(1, len(layers_sizes) - 1): |
|
out_features = layers_sizes[i] |
|
layers.append(torch.nn.Linear(in_features, out_features)) |
|
layers.append(torch.nn.ReLU()) |
|
in_features = out_features |
|
layers.append(torch.nn.Linear(in_features, layers_sizes[-1])) |
|
return torch.nn.Sequential(*layers) |
|
|
|
|
|
def apply_threshold(det_thresh, _scores): |
|
"""Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately""" |
|
if isinstance(det_thresh, list): |
|
det_thresh = det_thresh[0] |
|
idx = torch.where(_scores >= det_thresh) |
|
return idx |
|
|
|
|
|
def _nms(heat, kernel=3): |
|
"""easy non maximal supression (as in CenterNet)""" |
|
|
|
if kernel not in [2, 4]: |
|
pad = (kernel - 1) // 2 |
|
else: |
|
if kernel == 2: |
|
pad = 1 |
|
else: |
|
pad = 2 |
|
|
|
hmax = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad) |
|
|
|
if hmax.shape[2] > heat.shape[2]: |
|
hmax = hmax[:, :, : heat.shape[2], : heat.shape[3]] |
|
|
|
keep = (hmax == heat).float() |
|
|
|
return heat * keep |
|
|
|
|
|
def _sigmoid(x): |
|
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1 - 1e-4) |
|
return y |
|
|
|
|
|
if __name__ == "__main__": |
|
Model() |
|
|