import torch import torch.nn as nn from engine.BiRefNet.config import Config from engine.BiRefNet.models.modules.aspp import ASPP, ASPPDeformable config = Config() class BasicDecBlk(nn.Module): def __init__(self, in_channels=64, out_channels=64, inter_channels=64): super(BasicDecBlk, self).__init__() inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64 self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) self.relu_in = nn.ReLU(inplace=True) if config.dec_att == "ASPP": self.dec_att = ASPP(in_channels=inter_channels) elif config.dec_att == "ASPPDeformable": self.dec_att = ASPPDeformable(in_channels=inter_channels) self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) self.bn_in = ( nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() ) self.bn_out = ( nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() ) def forward(self, x): x = self.conv_in(x) x = self.bn_in(x) x = self.relu_in(x) if hasattr(self, "dec_att"): x = self.dec_att(x) x = self.conv_out(x) x = self.bn_out(x) return x class ResBlk(nn.Module): def __init__(self, in_channels=64, out_channels=None, inter_channels=64): super(ResBlk, self).__init__() if out_channels is None: out_channels = in_channels inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64 self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) self.bn_in = ( nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() ) self.relu_in = nn.ReLU(inplace=True) if config.dec_att == "ASPP": self.dec_att = ASPP(in_channels=inter_channels) elif config.dec_att == "ASPPDeformable": self.dec_att = ASPPDeformable(in_channels=inter_channels) self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) self.bn_out = ( nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() ) self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0) def forward(self, x): _x = self.conv_resi(x) x = self.conv_in(x) x = self.bn_in(x) x = self.relu_in(x) if hasattr(self, "dec_att"): x = self.dec_att(x) x = self.conv_out(x) x = self.bn_out(x) return x + _x