import torch.nn as nn def build_act_layer(act_layer): if act_layer == "ReLU": return nn.ReLU(inplace=True) elif act_layer == "SiLU": return nn.SiLU(inplace=True) elif act_layer == "GELU": return nn.GELU() raise NotImplementedError(f"build_act_layer does not support {act_layer}") def build_norm_layer( dim, norm_layer, in_format="channels_last", out_format="channels_last", eps=1e-6 ): layers = [] if norm_layer == "BN": if in_format == "channels_last": layers.append(to_channels_first()) layers.append(nn.BatchNorm2d(dim)) if out_format == "channels_last": layers.append(to_channels_last()) elif norm_layer == "LN": if in_format == "channels_first": layers.append(to_channels_last()) layers.append(nn.LayerNorm(dim, eps=eps)) if out_format == "channels_first": layers.append(to_channels_first()) else: raise NotImplementedError(f"build_norm_layer does not support {norm_layer}") return nn.Sequential(*layers) class to_channels_first(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.permute(0, 3, 1, 2) class to_channels_last(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.permute(0, 2, 3, 1)