File size: 37,127 Bytes
abd09b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
import argparse
import math
import os
import toml
import json
import time
from typing import Dict, List, Optional, Tuple, Union

import torch
from safetensors.torch import save_file
from accelerate import Accelerator, PartialState
from tqdm import tqdm
from PIL import Image
from transformers import CLIPTextModelWithProjection, T5EncoderModel

from library.device_utils import init_ipex, clean_memory_on_device

init_ipex()

# from transformers import CLIPTokenizer
# from library import model_util
# , sdxl_model_util, train_util, sdxl_original_unet
# from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline
from .utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)

from library import sd3_models, sd3_utils, strategy_base, train_util


def save_models(
    ckpt_path: str,
    mmdit: Optional[sd3_models.MMDiT],
    vae: Optional[sd3_models.SDVAE],
    clip_l: Optional[CLIPTextModelWithProjection],
    clip_g: Optional[CLIPTextModelWithProjection],
    t5xxl: Optional[T5EncoderModel],
    sai_metadata: Optional[dict],
    save_dtype: Optional[torch.dtype] = None,
):
    r"""
    Save models to checkpoint file. Only supports unified checkpoint format.
    """

    state_dict = {}

    def update_sd(prefix, sd):
        for k, v in sd.items():
            key = prefix + k
            if save_dtype is not None:
                v = v.detach().clone().to("cpu").to(save_dtype)
            state_dict[key] = v

    update_sd("model.diffusion_model.", mmdit.state_dict())
    update_sd("first_stage_model.", vae.state_dict())

    # do not support unified checkpoint format for now
    # if clip_l is not None:
    #     update_sd("text_encoders.clip_l.", clip_l.state_dict())
    # if clip_g is not None:
    #     update_sd("text_encoders.clip_g.", clip_g.state_dict())
    # if t5xxl is not None:
    #     update_sd("text_encoders.t5xxl.", t5xxl.state_dict())

    save_file(state_dict, ckpt_path, metadata=sai_metadata)

    if clip_l is not None:
        clip_l_path = ckpt_path.replace(".safetensors", "_clip_l.safetensors")
        save_file(clip_l.state_dict(), clip_l_path)
    if clip_g is not None:
        clip_g_path = ckpt_path.replace(".safetensors", "_clip_g.safetensors")
        save_file(clip_g.state_dict(), clip_g_path)
    if t5xxl is not None:
        t5xxl_path = ckpt_path.replace(".safetensors", "_t5xxl.safetensors")
        t5xxl_state_dict = t5xxl.state_dict()

        # replace "shared.weight" with copy of it to avoid annoying shared tensor error on safetensors.save_file
        shared_weight = t5xxl_state_dict["shared.weight"]
        shared_weight_copy = shared_weight.detach().clone()
        t5xxl_state_dict["shared.weight"] = shared_weight_copy

        save_file(t5xxl_state_dict, t5xxl_path)


def save_sd3_model_on_train_end(
    args: argparse.Namespace,
    save_dtype: torch.dtype,
    epoch: int,
    global_step: int,
    clip_l: Optional[CLIPTextModelWithProjection],
    clip_g: Optional[CLIPTextModelWithProjection],
    t5xxl: Optional[T5EncoderModel],
    mmdit: sd3_models.MMDiT,
    vae: sd3_models.SDVAE,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = train_util.get_sai_model_spec(
            None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type
        )
        save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype)

    train_util.save_sd_model_on_train_end_common(args, True, True, epoch, global_step, sd_saver, None)


# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd3_model_on_epoch_end_or_stepwise(
    args: argparse.Namespace,
    on_epoch_end: bool,
    accelerator,
    save_dtype: torch.dtype,
    epoch: int,
    num_train_epochs: int,
    global_step: int,
    clip_l: Optional[CLIPTextModelWithProjection],
    clip_g: Optional[CLIPTextModelWithProjection],
    t5xxl: Optional[T5EncoderModel],
    mmdit: sd3_models.MMDiT,
    vae: sd3_models.SDVAE,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = train_util.get_sai_model_spec(
            None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type
        )
        save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype)

    train_util.save_sd_model_on_epoch_end_or_stepwise_common(
        args,
        on_epoch_end,
        accelerator,
        True,
        True,
        epoch,
        num_train_epochs,
        global_step,
        sd_saver,
        None,
    )


def add_sd3_training_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--clip_l",
        type=str,
        required=False,
        help="CLIP-L model path. if not specified, use ckpt's state_dict / CLIP-Lモデルのパス。指定しない場合はckptのstate_dictを使用",
    )
    parser.add_argument(
        "--clip_g",
        type=str,
        required=False,
        help="CLIP-G model path. if not specified, use ckpt's state_dict / CLIP-Gモデルのパス。指定しない場合はckptのstate_dictを使用",
    )
    parser.add_argument(
        "--t5xxl",
        type=str,
        required=False,
        help="T5-XXL model path. if not specified, use ckpt's state_dict / T5-XXLモデルのパス。指定しない場合はckptのstate_dictを使用",
    )
    parser.add_argument(
        "--save_clip",
        action="store_true",
        help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません",
    )
    parser.add_argument(
        "--save_t5xxl",
        action="store_true",
        help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません",
    )

    parser.add_argument(
        "--t5xxl_device",
        type=str,
        default=None,
        help="[DOES NOT WORK] not supported yet. T5-XXL device. if not specified, use accelerator's device / T5-XXLデバイス。指定しない場合はacceleratorのデバイスを使用",
    )
    parser.add_argument(
        "--t5xxl_dtype",
        type=str,
        default=None,
        help="[DOES NOT WORK] not supported yet. T5-XXL dtype. if not specified, use default dtype (from mixed precision) / T5-XXL dtype。指定しない場合はデフォルトのdtype(mixed precisionから)を使用",
    )

    parser.add_argument(
        "--t5xxl_max_token_length",
        type=int,
        default=256,
        help="maximum token length for T5-XXL. 256 is the default value / T5-XXLの最大トークン長。デフォルトは256",
    )
    parser.add_argument(
        "--apply_lg_attn_mask",
        action="store_true",
        help="apply attention mask (zero embs) to CLIP-L and G / CLIP-LとGにアテンションマスク(ゼロ埋め)を適用する",
    )
    parser.add_argument(
        "--apply_t5_attn_mask",
        action="store_true",
        help="apply attention mask (zero embs) to T5-XXL / T5-XXLにアテンションマスク(ゼロ埋め)を適用する",
    )
    parser.add_argument(
        "--clip_l_dropout_rate",
        type=float,
        default=0.0,
        help="Dropout rate for CLIP-L encoder, default is 0.0 / CLIP-Lエンコーダのドロップアウト率、デフォルトは0.0",
    )
    parser.add_argument(
        "--clip_g_dropout_rate",
        type=float,
        default=0.0,
        help="Dropout rate for CLIP-G encoder, default is 0.0 / CLIP-Gエンコーダのドロップアウト率、デフォルトは0.0",
    )
    parser.add_argument(
        "--t5_dropout_rate",
        type=float,
        default=0.0,
        help="Dropout rate for T5 encoder, default is 0.0 / T5エンコーダのドロップアウト率、デフォルトは0.0",
    )
    parser.add_argument(
        "--pos_emb_random_crop_rate",
        type=float,
        default=0.0,
        help="Random crop rate for positional embeddings, default is 0.0. Only for SD3.5M"
        " / 位置埋め込みのランダムクロップ率、デフォルトは0.0。SD3.5M以外では予期しない動作になります",
    )
    parser.add_argument(
        "--enable_scaled_pos_embed",
        action="store_true",
        help="Scale position embeddings for each resolution during multi-resolution training. Only for SD3.5M"
        " / 複数解像度学習時に解像度ごとに位置埋め込みをスケーリングする。SD3.5M以外では予期しない動作になります",
    )

    # Dependencies of Diffusers noise sampler has been removed for clarity in training

    parser.add_argument(
        "--training_shift",
        type=float,
        default=1.0,
        help="Discrete flow shift for training timestep distribution adjustment, applied in addition to the weighting scheme, default is 1.0. /タイムステップ分布のための離散フローシフト、重み付けスキームの上に適用される、デフォルトは1.0。",
    )


def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True):
    assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません"
    if args.v_parameterization:
        logger.warning("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります")

    if args.clip_skip is not None:
        logger.warning("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")

    # if args.multires_noise_iterations:
    #     logger.info(
    #         f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
    #     )
    # else:
    #     if args.noise_offset is None:
    #         args.noise_offset = DEFAULT_NOISE_OFFSET
    #     elif args.noise_offset != DEFAULT_NOISE_OFFSET:
    #         logger.info(
    #             f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
    #         )
    #     logger.info(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")

    assert (
        not hasattr(args, "weighted_captions") or not args.weighted_captions
    ), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"

    if supportTextEncoderCaching:
        if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
            args.cache_text_encoder_outputs = True
            logger.warning(
                "cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / "
                + "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました"
            )


# temporary copied from sd3_minimal_inferece.py


def get_all_sigmas(sampling: sd3_utils.ModelSamplingDiscreteFlow, steps):
    start = sampling.timestep(sampling.sigma_max)
    end = sampling.timestep(sampling.sigma_min)
    timesteps = torch.linspace(start, end, steps)
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
        sigs.append(sampling.sigma(ts))
    sigs += [0.0]
    return torch.FloatTensor(sigs)


def max_denoise(model_sampling, sigmas):
    max_sigma = float(model_sampling.sigma_max)
    sigma = float(sigmas[0])
    return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma


def do_sample(
    height: int,
    width: int,
    seed: int,
    cond: Tuple[torch.Tensor, torch.Tensor],
    neg_cond: Tuple[torch.Tensor, torch.Tensor],
    mmdit: sd3_models.MMDiT,
    steps: int,
    guidance_scale: float,
    dtype: torch.dtype,
    device: str,
):
    latent = torch.zeros(1, 16, height // 8, width // 8, device=device)
    latent = latent.to(dtype).to(device)

    # noise = get_noise(seed, latent).to(device)
    if seed is not None:
        generator = torch.manual_seed(seed)
    else:
        generator = None
    noise = (
        torch.randn(latent.size(), dtype=torch.float32, layout=latent.layout, generator=generator, device="cpu")
        .to(latent.dtype)
        .to(device)
    )

    model_sampling = sd3_utils.ModelSamplingDiscreteFlow(shift=3.0)  # 3.0 is for SD3

    sigmas = get_all_sigmas(model_sampling, steps).to(device)

    noise_scaled = model_sampling.noise_scaling(sigmas[0], noise, latent, max_denoise(model_sampling, sigmas))

    c_crossattn = torch.cat([cond[0], neg_cond[0]]).to(device).to(dtype)
    y = torch.cat([cond[1], neg_cond[1]]).to(device).to(dtype)

    x = noise_scaled.to(device).to(dtype)
    # print(x.shape)

    # with torch.no_grad():
    for i in tqdm(range(len(sigmas) - 1)):
        sigma_hat = sigmas[i]

        timestep = model_sampling.timestep(sigma_hat).float()
        timestep = torch.FloatTensor([timestep, timestep]).to(device)

        x_c_nc = torch.cat([x, x], dim=0)
        # print(x_c_nc.shape, timestep.shape, c_crossattn.shape, y.shape)

        mmdit.prepare_block_swap_before_forward()
        model_output = mmdit(x_c_nc, timestep, context=c_crossattn, y=y)
        model_output = model_output.float()
        batched = model_sampling.calculate_denoised(sigma_hat, model_output, x)

        pos_out, neg_out = batched.chunk(2)
        denoised = neg_out + (pos_out - neg_out) * guidance_scale
        # print(denoised.shape)

        # d = to_d(x, sigma_hat, denoised)
        dims_to_append = x.ndim - sigma_hat.ndim
        sigma_hat_dims = sigma_hat[(...,) + (None,) * dims_to_append]
        # print(dims_to_append, x.shape, sigma_hat.shape, denoised.shape, sigma_hat_dims.shape)
        """Converts a denoiser output to a Karras ODE derivative."""
        d = (x - denoised) / sigma_hat_dims

        dt = sigmas[i + 1] - sigma_hat

        # Euler method
        x = x + d * dt
        x = x.to(dtype)

    mmdit.prepare_block_swap_before_forward()
    return x


def sample_images(
    accelerator: Accelerator,
    args: argparse.Namespace,
    epoch,
    steps,
    mmdit,
    vae,
    text_encoders,
    sample_prompts_te_outputs,
    prompt_replacement=None,
):
    if steps == 0:
        if not args.sample_at_first:
            return
    else:
        if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
            return
        if args.sample_every_n_epochs is not None:
            # sample_every_n_steps は無視する
            if epoch is None or epoch % args.sample_every_n_epochs != 0:
                return
        else:
            if steps % args.sample_every_n_steps != 0 or epoch is not None:  # steps is not divisible or end of epoch
                return

    logger.info("")
    logger.info(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
    if not os.path.isfile(args.sample_prompts) and sample_prompts_te_outputs is None:
        logger.error(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
        return

    distributed_state = PartialState()  # for multi gpu distributed inference. this is a singleton, so it's safe to use it here

    # unwrap unet and text_encoder(s)
    mmdit = accelerator.unwrap_model(mmdit)
    text_encoders = None if text_encoders is None else [accelerator.unwrap_model(te) for te in text_encoders]
    # print([(te.parameters().__next__().device if te is not None else None) for te in text_encoders])

    prompts = train_util.load_prompts(args.sample_prompts)

    save_dir = args.output_dir + "/sample"
    os.makedirs(save_dir, exist_ok=True)

    # save random state to restore later
    rng_state = torch.get_rng_state()
    cuda_rng_state = None
    try:
        cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
    except Exception:
        pass

    if distributed_state.num_processes <= 1:
        # If only one device is available, just use the original prompt list. We don't need to care about the distribution of prompts.
        with torch.no_grad(), accelerator.autocast():
            for prompt_dict in prompts:
                sample_image_inference(
                    accelerator,
                    args,
                    mmdit,
                    text_encoders,
                    vae,
                    save_dir,
                    prompt_dict,
                    epoch,
                    steps,
                    sample_prompts_te_outputs,
                    prompt_replacement,
                )
    else:
        # Creating list with N elements, where each element is a list of prompt_dicts, and N is the number of processes available (number of devices available)
        # prompt_dicts are assigned to lists based on order of processes, to attempt to time the image creation time to match enum order. Probably only works when steps and sampler are identical.
        per_process_prompts = []  # list of lists
        for i in range(distributed_state.num_processes):
            per_process_prompts.append(prompts[i :: distributed_state.num_processes])

        with torch.no_grad():
            with distributed_state.split_between_processes(per_process_prompts) as prompt_dict_lists:
                for prompt_dict in prompt_dict_lists[0]:
                    sample_image_inference(
                        accelerator,
                        args,
                        mmdit,
                        text_encoders,
                        vae,
                        save_dir,
                        prompt_dict,
                        epoch,
                        steps,
                        sample_prompts_te_outputs,
                        prompt_replacement,
                    )

    torch.set_rng_state(rng_state)
    if cuda_rng_state is not None:
        torch.cuda.set_rng_state(cuda_rng_state)

    clean_memory_on_device(accelerator.device)


def sample_image_inference(
    accelerator: Accelerator,
    args: argparse.Namespace,
    mmdit: sd3_models.MMDiT,
    text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]],
    vae: sd3_models.SDVAE,
    save_dir,
    prompt_dict,
    epoch,
    steps,
    sample_prompts_te_outputs,
    prompt_replacement,
):
    assert isinstance(prompt_dict, dict)
    negative_prompt = prompt_dict.get("negative_prompt")
    sample_steps = prompt_dict.get("sample_steps", 30)
    width = prompt_dict.get("width", 512)
    height = prompt_dict.get("height", 512)
    scale = prompt_dict.get("scale", 7.5)
    seed = prompt_dict.get("seed")
    # controlnet_image = prompt_dict.get("controlnet_image")
    prompt: str = prompt_dict.get("prompt", "")
    # sampler_name: str = prompt_dict.get("sample_sampler", args.sample_sampler)

    if prompt_replacement is not None:
        prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
        if negative_prompt is not None:
            negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])

    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
    else:
        # True random sample image generation
        torch.seed()
        torch.cuda.seed()

    if negative_prompt is None:
        negative_prompt = ""

    height = max(64, height - height % 8)  # round to divisible by 8
    width = max(64, width - width % 8)  # round to divisible by 8
    logger.info(f"prompt: {prompt}")
    logger.info(f"negative_prompt: {negative_prompt}")
    logger.info(f"height: {height}")
    logger.info(f"width: {width}")
    logger.info(f"sample_steps: {sample_steps}")
    logger.info(f"scale: {scale}")
    # logger.info(f"sample_sampler: {sampler_name}")
    if seed is not None:
        logger.info(f"seed: {seed}")

    # encode prompts
    tokenize_strategy = strategy_base.TokenizeStrategy.get_strategy()
    encoding_strategy = strategy_base.TextEncodingStrategy.get_strategy()

    def encode_prompt(prpt):
        text_encoder_conds = []
        if sample_prompts_te_outputs and prpt in sample_prompts_te_outputs:
            text_encoder_conds = sample_prompts_te_outputs[prpt]
            print(f"Using cached text encoder outputs for prompt: {prpt}")
        if text_encoders is not None:
            print(f"Encoding prompt: {prpt}")
            tokens_and_masks = tokenize_strategy.tokenize(prpt)
            # strategy has apply_t5_attn_mask option
            encoded_text_encoder_conds = encoding_strategy.encode_tokens(tokenize_strategy, text_encoders, tokens_and_masks)

            # if text_encoder_conds is not cached, use encoded_text_encoder_conds
            if len(text_encoder_conds) == 0:
                text_encoder_conds = encoded_text_encoder_conds
            else:
                # if encoded_text_encoder_conds is not None, update cached text_encoder_conds
                for i in range(len(encoded_text_encoder_conds)):
                    if encoded_text_encoder_conds[i] is not None:
                        text_encoder_conds[i] = encoded_text_encoder_conds[i]
        return text_encoder_conds

    lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(prompt)
    cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled)

    # encode negative prompts
    lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(negative_prompt)
    neg_cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled)

    # sample image
    clean_memory_on_device(accelerator.device)
    with accelerator.autocast(), torch.no_grad():
        # mmdit may be fp8, so we need weight_dtype here. vae is always in that dtype.
        latents = do_sample(height, width, seed, cond, neg_cond, mmdit, sample_steps, scale, vae.dtype, accelerator.device)

    # latent to image
    clean_memory_on_device(accelerator.device)
    org_vae_device = vae.device  # will be on cpu
    vae.to(accelerator.device)
    latents = vae.process_out(latents.to(vae.device, dtype=vae.dtype))
    image = vae.decode(latents)
    vae.to(org_vae_device)
    clean_memory_on_device(accelerator.device)

    image = image.float()
    image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0]
    decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2)
    decoded_np = decoded_np.astype(np.uint8)

    image = Image.fromarray(decoded_np)
    # adding accelerator.wait_for_everyone() here should sync up and ensure that sample images are saved in the same order as the original prompt list
    # but adding 'enum' to the filename should be enough

    ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
    num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
    seed_suffix = "" if seed is None else f"_{seed}"
    i: int = prompt_dict["enum"]
    img_filename = f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{i:02d}_{ts_str}{seed_suffix}.png"
    image.save(os.path.join(save_dir, img_filename))

    # send images to wandb if enabled
    if "wandb" in [tracker.name for tracker in accelerator.trackers]:
        wandb_tracker = accelerator.get_tracker("wandb")

        import wandb

        # not to commit images to avoid inconsistency between training and logging steps
        wandb_tracker.log({f"sample_{i}": wandb.Image(image, caption=prompt)}, commit=False)  # positive prompt as a caption


# region Diffusers


from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import BaseOutput


@dataclass
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Euler scheduler.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        shift (`float`, defaults to 1.0):
            The shift value for the timestep schedule.
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
    ):
        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

        sigmas = timesteps / num_train_timesteps
        sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def scale_noise(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        noise: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Forward process in flow-matching

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = sigma * noise + (1.0 - sigma) * sample

        return sample

    def _sigma_to_t(self, sigma):
        return sigma * self.config.num_train_timesteps

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps

        timesteps = np.linspace(self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps)

        sigmas = timesteps / self.config.num_train_timesteps
        sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)

        timesteps = sigmas * self.config.num_train_timesteps
        self.timesteps = timesteps.to(device=device)
        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        self._step_index = None
        self._begin_index = None

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

        sigma = self.sigmas[self.step_index]

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator)

        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility

        # if self.config.prediction_type == "vector_field":

        denoised = sample - model_output * sigma
        # 2. Convert to an ODE derivative
        derivative = (sample - denoised) / sigma_hat

        dt = self.sigmas[self.step_index + 1] - sigma_hat

        prev_sample = sample + derivative * dt
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)

    def __len__(self):
        return self.config.num_train_timesteps


def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
    sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
    schedule_timesteps = noise_scheduler.timesteps.to(device)
    timesteps = timesteps.to(device)
    step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

    sigma = sigmas[step_indices].flatten()
    while len(sigma.shape) < n_dim:
        sigma = sigma.unsqueeze(-1)
    return sigma


def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
    """Compute the density for sampling the timesteps when doing SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u


def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
    """Computes loss weighting scheme for SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "sigma_sqrt":
        weighting = (sigmas**-2.0).float()
    elif weighting_scheme == "cosmap":
        bot = 1 - 2 * sigmas + 2 * sigmas**2
        weighting = 2 / (math.pi * bot)
    else:
        weighting = torch.ones_like(sigmas)
    return weighting


# endregion


def get_noisy_model_input_and_timesteps(args, latents, noise, device, dtype) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    bsz = latents.shape[0]

    # Sample a random timestep for each image
    # for weighting schemes where we sample timesteps non-uniformly
    u = compute_density_for_timestep_sampling(
        weighting_scheme=args.weighting_scheme,
        batch_size=bsz,
        logit_mean=args.logit_mean,
        logit_std=args.logit_std,
        mode_scale=args.mode_scale,
    )
    t_min = args.min_timestep if args.min_timestep is not None else 0
    t_max = args.max_timestep if args.max_timestep is not None else 1000
    shift = args.training_shift

    # weighting shift, value >1 will shift distribution to noisy side (focus more on overall structure), value <1 will shift towards less-noisy side (focus more on details)
    u = (u * shift) / (1 + (shift - 1) * u)

    indices = (u * (t_max - t_min) + t_min).long()
    timesteps = indices.to(device=device, dtype=dtype)

    # sigmas according to flowmatching
    sigmas = timesteps / 1000
    sigmas = sigmas.view(-1, 1, 1, 1)
    noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents

    return noisy_model_input, timesteps, sigmas