Spaces:
Runtime error
Runtime error
File size: 10,005 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# some parts are modified from Diffusers library (Apache License 2.0)
import math
from types import SimpleNamespace
from typing import Any, Optional
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import sdxl_original_unet
from library.sdxl_model_util import convert_sdxl_unet_state_dict_to_diffusers, convert_diffusers_unet_state_dict_to_sdxl
class ControlNetConditioningEmbedding(nn.Module):
def __init__(self):
super().__init__()
dims = [16, 32, 96, 256]
self.conv_in = nn.Conv2d(3, dims[0], kernel_size=3, padding=1)
self.blocks = nn.ModuleList([])
for i in range(len(dims) - 1):
channel_in = dims[i]
channel_out = dims[i + 1]
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
self.conv_out = nn.Conv2d(dims[-1], 320, kernel_size=3, padding=1)
nn.init.zeros_(self.conv_out.weight) # zero module weight
nn.init.zeros_(self.conv_out.bias) # zero module bias
def forward(self, x):
x = self.conv_in(x)
x = F.silu(x)
for block in self.blocks:
x = block(x)
x = F.silu(x)
x = self.conv_out(x)
return x
class SdxlControlNet(sdxl_original_unet.SdxlUNet2DConditionModel):
def __init__(self, multiplier: Optional[float] = None, **kwargs):
super().__init__(**kwargs)
self.multiplier = multiplier
# remove unet layers
self.output_blocks = nn.ModuleList([])
del self.out
self.controlnet_cond_embedding = ControlNetConditioningEmbedding()
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280]
self.controlnet_down_blocks = nn.ModuleList([])
for dim in dims:
self.controlnet_down_blocks.append(nn.Conv2d(dim, dim, kernel_size=1))
nn.init.zeros_(self.controlnet_down_blocks[-1].weight) # zero module weight
nn.init.zeros_(self.controlnet_down_blocks[-1].bias) # zero module bias
self.controlnet_mid_block = nn.Conv2d(1280, 1280, kernel_size=1)
nn.init.zeros_(self.controlnet_mid_block.weight) # zero module weight
nn.init.zeros_(self.controlnet_mid_block.bias) # zero module bias
def init_from_unet(self, unet: sdxl_original_unet.SdxlUNet2DConditionModel):
unet_sd = unet.state_dict()
unet_sd = {k: v for k, v in unet_sd.items() if not k.startswith("out")}
sd = super().state_dict()
sd.update(unet_sd)
info = super().load_state_dict(sd, strict=True, assign=True)
return info
def load_state_dict(self, state_dict: dict, strict: bool = True, assign: bool = True) -> Any:
# convert state_dict to SAI format
unet_sd = {}
for k in list(state_dict.keys()):
if not k.startswith("controlnet_"):
unet_sd[k] = state_dict.pop(k)
unet_sd = convert_diffusers_unet_state_dict_to_sdxl(unet_sd)
state_dict.update(unet_sd)
super().load_state_dict(state_dict, strict=strict, assign=assign)
def state_dict(self, destination=None, prefix="", keep_vars=False):
# convert state_dict to Diffusers format
state_dict = super().state_dict(destination, prefix, keep_vars)
control_net_sd = {}
for k in list(state_dict.keys()):
if k.startswith("controlnet_"):
control_net_sd[k] = state_dict.pop(k)
state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict)
state_dict.update(control_net_sd)
return state_dict
def forward(
self,
x: torch.Tensor,
timesteps: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
cond_image: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
if isinstance(layer, sdxl_original_unet.ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, sdxl_original_unet.Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
h = x
multiplier = self.multiplier if self.multiplier is not None else 1.0
hs = []
for i, module in enumerate(self.input_blocks):
h = call_module(module, h, emb, context)
if i == 0:
h = self.controlnet_cond_embedding(cond_image) + h
hs.append(self.controlnet_down_blocks[i](h) * multiplier)
h = call_module(self.middle_block, h, emb, context)
h = self.controlnet_mid_block(h) * multiplier
return hs, h
class SdxlControlledUNet(sdxl_original_unet.SdxlUNet2DConditionModel):
"""
This class is for training purpose only.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, x, timesteps=None, context=None, y=None, input_resi_add=None, mid_add=None, **kwargs):
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
if isinstance(layer, sdxl_original_unet.ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, sdxl_original_unet.Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
h = x
for module in self.input_blocks:
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(self.middle_block, h, emb, context)
h = h + mid_add
for module in self.output_blocks:
resi = hs.pop() + input_resi_add.pop()
h = torch.cat([h, resi], dim=1)
h = call_module(module, h, emb, context)
h = h.type(x.dtype)
h = call_module(self.out, h, emb, context)
return h
if __name__ == "__main__":
import time
logger.info("create unet")
unet = SdxlControlledUNet()
unet.to("cuda", torch.bfloat16)
unet.set_use_sdpa(True)
unet.set_gradient_checkpointing(True)
unet.train()
logger.info("create control_net")
control_net = SdxlControlNet()
control_net.to("cuda")
control_net.set_use_sdpa(True)
control_net.set_gradient_checkpointing(True)
control_net.train()
logger.info("Initialize control_net from unet")
control_net.init_from_unet(unet)
unet.requires_grad_(False)
control_net.requires_grad_(True)
# 使用メモリ量確認用の疑似学習ループ
logger.info("preparing optimizer")
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
import bitsandbytes
optimizer = bitsandbytes.adam.Adam8bit(control_net.parameters(), lr=1e-3) # not working
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# import transformers
# optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
scaler = torch.cuda.amp.GradScaler(enabled=True)
logger.info("start training")
steps = 10
batch_size = 1
for step in range(steps):
logger.info(f"step {step}")
if step == 1:
time_start = time.perf_counter()
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
t = torch.randint(low=0, high=1000, size=(batch_size,), device="cuda")
txt = torch.randn(batch_size, 77, 2048).cuda()
vector = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda()
cond_img = torch.rand(batch_size, 3, 1024, 1024).cuda()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
input_resi_add, mid_add = control_net(x, t, txt, vector, cond_img)
output = unet(x, t, txt, vector, input_resi_add, mid_add)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
time_end = time.perf_counter()
logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")
logger.info("finish training")
sd = control_net.state_dict()
from safetensors.torch import save_file
save_file(sd, r"E:\Work\SD\Tmp\sdxl\ctrl\control_net.safetensors")
|