Spaces:
Runtime error
Runtime error
File size: 19,032 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os
import glob
import random
from typing import Any, List, Optional, Tuple, Union
import torch
import numpy as np
from transformers import CLIPTokenizer, T5TokenizerFast, CLIPTextModel, CLIPTextModelWithProjection, T5EncoderModel
from library import sd3_utils, train_util
from library import sd3_models
from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14"
CLIP_G_TOKENIZER_ID = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl"
class Sd3TokenizeStrategy(TokenizeStrategy):
def __init__(self, t5xxl_max_length: int = 256, tokenizer_cache_dir: Optional[str] = None) -> None:
self.t5xxl_max_length = t5xxl_max_length
self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.clip_g = self._load_tokenizer(CLIPTokenizer, CLIP_G_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.clip_g.pad_token_id = 0 # use 0 as pad token for clip_g
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
g_tokens = self.clip_g(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt")
l_attn_mask = l_tokens["attention_mask"]
g_attn_mask = g_tokens["attention_mask"]
t5_attn_mask = t5_tokens["attention_mask"]
l_tokens = l_tokens["input_ids"]
g_tokens = g_tokens["input_ids"]
t5_tokens = t5_tokens["input_ids"]
return [l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask]
class Sd3TextEncodingStrategy(TextEncodingStrategy):
def __init__(
self,
apply_lg_attn_mask: Optional[bool] = None,
apply_t5_attn_mask: Optional[bool] = None,
l_dropout_rate: float = 0.0,
g_dropout_rate: float = 0.0,
t5_dropout_rate: float = 0.0,
) -> None:
"""
Args:
apply_t5_attn_mask: Default value for apply_t5_attn_mask.
"""
self.apply_lg_attn_mask = apply_lg_attn_mask
self.apply_t5_attn_mask = apply_t5_attn_mask
self.l_dropout_rate = l_dropout_rate
self.g_dropout_rate = g_dropout_rate
self.t5_dropout_rate = t5_dropout_rate
def encode_tokens(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens: List[torch.Tensor],
apply_lg_attn_mask: Optional[bool] = False,
apply_t5_attn_mask: Optional[bool] = False,
enable_dropout: bool = True,
) -> List[torch.Tensor]:
"""
returned embeddings are not masked
"""
clip_l, clip_g, t5xxl = models
clip_l: Optional[CLIPTextModel]
clip_g: Optional[CLIPTextModelWithProjection]
t5xxl: Optional[T5EncoderModel]
if apply_lg_attn_mask is None:
apply_lg_attn_mask = self.apply_lg_attn_mask
if apply_t5_attn_mask is None:
apply_t5_attn_mask = self.apply_t5_attn_mask
l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask = tokens
# dropout: if enable_dropout is False, dropout is not applied. dropout means zeroing out embeddings
if l_tokens is None or clip_l is None:
assert g_tokens is None, "g_tokens must be None if l_tokens is None"
lg_out = None
lg_pooled = None
l_attn_mask = None
g_attn_mask = None
else:
assert g_tokens is not None, "g_tokens must not be None if l_tokens is not None"
# drop some members of the batch: we do not call clip_l and clip_g for dropped members
batch_size, l_seq_len = l_tokens.shape
g_seq_len = g_tokens.shape[1]
non_drop_l_indices = []
non_drop_g_indices = []
for i in range(l_tokens.shape[0]):
drop_l = enable_dropout and (self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate)
drop_g = enable_dropout and (self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate)
if not drop_l:
non_drop_l_indices.append(i)
if not drop_g:
non_drop_g_indices.append(i)
# filter out dropped members
if len(non_drop_l_indices) > 0 and len(non_drop_l_indices) < batch_size:
l_tokens = l_tokens[non_drop_l_indices]
l_attn_mask = l_attn_mask[non_drop_l_indices]
if len(non_drop_g_indices) > 0 and len(non_drop_g_indices) < batch_size:
g_tokens = g_tokens[non_drop_g_indices]
g_attn_mask = g_attn_mask[non_drop_g_indices]
# call clip_l for non-dropped members
if len(non_drop_l_indices) > 0:
nd_l_attn_mask = l_attn_mask.to(clip_l.device)
prompt_embeds = clip_l(
l_tokens.to(clip_l.device), nd_l_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True
)
nd_l_pooled = prompt_embeds[0]
nd_l_out = prompt_embeds.hidden_states[-2]
if len(non_drop_g_indices) > 0:
nd_g_attn_mask = g_attn_mask.to(clip_g.device)
prompt_embeds = clip_g(
g_tokens.to(clip_g.device), nd_g_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True
)
nd_g_pooled = prompt_embeds[0]
nd_g_out = prompt_embeds.hidden_states[-2]
# fill in the dropped members
if len(non_drop_l_indices) == batch_size:
l_pooled = nd_l_pooled
l_out = nd_l_out
else:
# model output is always float32 because of the models are wrapped with Accelerator
l_pooled = torch.zeros((batch_size, 768), device=clip_l.device, dtype=torch.float32)
l_out = torch.zeros((batch_size, l_seq_len, 768), device=clip_l.device, dtype=torch.float32)
l_attn_mask = torch.zeros((batch_size, l_seq_len), device=clip_l.device, dtype=l_attn_mask.dtype)
if len(non_drop_l_indices) > 0:
l_pooled[non_drop_l_indices] = nd_l_pooled
l_out[non_drop_l_indices] = nd_l_out
l_attn_mask[non_drop_l_indices] = nd_l_attn_mask
if len(non_drop_g_indices) == batch_size:
g_pooled = nd_g_pooled
g_out = nd_g_out
else:
g_pooled = torch.zeros((batch_size, 1280), device=clip_g.device, dtype=torch.float32)
g_out = torch.zeros((batch_size, g_seq_len, 1280), device=clip_g.device, dtype=torch.float32)
g_attn_mask = torch.zeros((batch_size, g_seq_len), device=clip_g.device, dtype=g_attn_mask.dtype)
if len(non_drop_g_indices) > 0:
g_pooled[non_drop_g_indices] = nd_g_pooled
g_out[non_drop_g_indices] = nd_g_out
g_attn_mask[non_drop_g_indices] = nd_g_attn_mask
lg_pooled = torch.cat((l_pooled, g_pooled), dim=-1)
lg_out = torch.cat([l_out, g_out], dim=-1)
if t5xxl is None or t5_tokens is None:
t5_out = None
t5_attn_mask = None
else:
# drop some members of the batch: we do not call t5xxl for dropped members
batch_size, t5_seq_len = t5_tokens.shape
non_drop_t5_indices = []
for i in range(t5_tokens.shape[0]):
drop_t5 = enable_dropout and (self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate)
if not drop_t5:
non_drop_t5_indices.append(i)
# filter out dropped members
if len(non_drop_t5_indices) > 0 and len(non_drop_t5_indices) < batch_size:
t5_tokens = t5_tokens[non_drop_t5_indices]
t5_attn_mask = t5_attn_mask[non_drop_t5_indices]
# call t5xxl for non-dropped members
if len(non_drop_t5_indices) > 0:
nd_t5_attn_mask = t5_attn_mask.to(t5xxl.device)
nd_t5_out, _ = t5xxl(
t5_tokens.to(t5xxl.device),
nd_t5_attn_mask if apply_t5_attn_mask else None,
return_dict=False,
output_hidden_states=True,
)
# fill in the dropped members
if len(non_drop_t5_indices) == batch_size:
t5_out = nd_t5_out
else:
t5_out = torch.zeros((batch_size, t5_seq_len, 4096), device=t5xxl.device, dtype=torch.float32)
t5_attn_mask = torch.zeros((batch_size, t5_seq_len), device=t5xxl.device, dtype=t5_attn_mask.dtype)
if len(non_drop_t5_indices) > 0:
t5_out[non_drop_t5_indices] = nd_t5_out
t5_attn_mask[non_drop_t5_indices] = nd_t5_attn_mask
# masks are used for attention masking in transformer
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def drop_cached_text_encoder_outputs(
self,
lg_out: torch.Tensor,
t5_out: torch.Tensor,
lg_pooled: torch.Tensor,
l_attn_mask: torch.Tensor,
g_attn_mask: torch.Tensor,
t5_attn_mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# dropout: if enable_dropout is True, dropout is not applied. dropout means zeroing out embeddings
if lg_out is not None:
for i in range(lg_out.shape[0]):
drop_l = self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate
if drop_l:
lg_out[i, :, :768] = torch.zeros_like(lg_out[i, :, :768])
lg_pooled[i, :768] = torch.zeros_like(lg_pooled[i, :768])
if l_attn_mask is not None:
l_attn_mask[i] = torch.zeros_like(l_attn_mask[i])
drop_g = self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate
if drop_g:
lg_out[i, :, 768:] = torch.zeros_like(lg_out[i, :, 768:])
lg_pooled[i, 768:] = torch.zeros_like(lg_pooled[i, 768:])
if g_attn_mask is not None:
g_attn_mask[i] = torch.zeros_like(g_attn_mask[i])
if t5_out is not None:
for i in range(t5_out.shape[0]):
drop_t5 = self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate
if drop_t5:
t5_out[i] = torch.zeros_like(t5_out[i])
if t5_attn_mask is not None:
t5_attn_mask[i] = torch.zeros_like(t5_attn_mask[i])
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def concat_encodings(
self, lg_out: torch.Tensor, t5_out: Optional[torch.Tensor], lg_pooled: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
if t5_out is None:
t5_out = torch.zeros((lg_out.shape[0], 77, 4096), device=lg_out.device, dtype=lg_out.dtype)
return torch.cat([lg_out, t5_out], dim=-2), lg_pooled
class Sd3TextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_sd3_te.npz"
def __init__(
self,
cache_to_disk: bool,
batch_size: int,
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
apply_lg_attn_mask: bool = False,
apply_t5_attn_mask: bool = False,
) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial)
self.apply_lg_attn_mask = apply_lg_attn_mask
self.apply_t5_attn_mask = apply_t5_attn_mask
def get_outputs_npz_path(self, image_abs_path: str) -> str:
return os.path.splitext(image_abs_path)[0] + Sd3TextEncoderOutputsCachingStrategy.SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX
def is_disk_cached_outputs_expected(self, npz_path: str):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
try:
npz = np.load(npz_path)
if "lg_out" not in npz:
return False
if "lg_pooled" not in npz:
return False
if "clip_l_attn_mask" not in npz or "clip_g_attn_mask" not in npz: # necessary even if not used
return False
if "apply_lg_attn_mask" not in npz:
return False
if "t5_out" not in npz:
return False
if "t5_attn_mask" not in npz:
return False
npz_apply_lg_attn_mask = npz["apply_lg_attn_mask"]
if npz_apply_lg_attn_mask != self.apply_lg_attn_mask:
return False
if "apply_t5_attn_mask" not in npz:
return False
npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"]
if npz_apply_t5_attn_mask != self.apply_t5_attn_mask:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
data = np.load(npz_path)
lg_out = data["lg_out"]
lg_pooled = data["lg_pooled"]
t5_out = data["t5_out"]
l_attn_mask = data["clip_l_attn_mask"]
g_attn_mask = data["clip_g_attn_mask"]
t5_attn_mask = data["t5_attn_mask"]
# apply_t5_attn_mask and apply_lg_attn_mask are same as self.apply_t5_attn_mask and self.apply_lg_attn_mask
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
):
sd3_text_encoding_strategy: Sd3TextEncodingStrategy = text_encoding_strategy
captions = [info.caption for info in infos]
tokens_and_masks = tokenize_strategy.tokenize(captions)
with torch.no_grad():
# always disable dropout during caching
lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask = sd3_text_encoding_strategy.encode_tokens(
tokenize_strategy,
models,
tokens_and_masks,
apply_lg_attn_mask=self.apply_lg_attn_mask,
apply_t5_attn_mask=self.apply_t5_attn_mask,
enable_dropout=False,
)
if lg_out.dtype == torch.bfloat16:
lg_out = lg_out.float()
if lg_pooled.dtype == torch.bfloat16:
lg_pooled = lg_pooled.float()
if t5_out.dtype == torch.bfloat16:
t5_out = t5_out.float()
lg_out = lg_out.cpu().numpy()
lg_pooled = lg_pooled.cpu().numpy()
t5_out = t5_out.cpu().numpy()
l_attn_mask = tokens_and_masks[3].cpu().numpy()
g_attn_mask = tokens_and_masks[4].cpu().numpy()
t5_attn_mask = tokens_and_masks[5].cpu().numpy()
for i, info in enumerate(infos):
lg_out_i = lg_out[i]
t5_out_i = t5_out[i]
lg_pooled_i = lg_pooled[i]
l_attn_mask_i = l_attn_mask[i]
g_attn_mask_i = g_attn_mask[i]
t5_attn_mask_i = t5_attn_mask[i]
apply_lg_attn_mask = self.apply_lg_attn_mask
apply_t5_attn_mask = self.apply_t5_attn_mask
if self.cache_to_disk:
np.savez(
info.text_encoder_outputs_npz,
lg_out=lg_out_i,
lg_pooled=lg_pooled_i,
t5_out=t5_out_i,
clip_l_attn_mask=l_attn_mask_i,
clip_g_attn_mask=g_attn_mask_i,
t5_attn_mask=t5_attn_mask_i,
apply_lg_attn_mask=apply_lg_attn_mask,
apply_t5_attn_mask=apply_t5_attn_mask,
)
else:
# it's fine that attn mask is not None. it's overwritten before calling the model if necessary
info.text_encoder_outputs = (lg_out_i, t5_out_i, lg_pooled_i, l_attn_mask_i, g_attn_mask_i, t5_attn_mask_i)
class Sd3LatentsCachingStrategy(LatentsCachingStrategy):
SD3_LATENTS_NPZ_SUFFIX = "_sd3.npz"
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check)
@property
def cache_suffix(self) -> str:
return Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
return (
os.path.splitext(absolute_path)[0]
+ f"_{image_size[0]:04d}x{image_size[1]:04d}"
+ Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX
)
def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool):
return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True)
def load_latents_from_disk(
self, npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
return self._default_load_latents_from_disk(8, npz_path, bucket_reso) # support multi-resolution
# TODO remove circular dependency for ImageInfo
def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu")
vae_device = vae.device
vae_dtype = vae.dtype
self._default_cache_batch_latents(
encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True
)
if not train_util.HIGH_VRAM:
train_util.clean_memory_on_device(vae.device)
|