File size: 21,636 Bytes
abd09b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import logging
import sys
import threading
from typing import *
import json
import struct

import torch
import torch.nn as nn
from torchvision import transforms
from diffusers import EulerAncestralDiscreteScheduler
import diffusers.schedulers.scheduling_euler_ancestral_discrete
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteSchedulerOutput
import cv2
from PIL import Image
import numpy as np
from safetensors.torch import load_file


def fire_in_thread(f, *args, **kwargs):
    threading.Thread(target=f, args=args, kwargs=kwargs).start()


# region Logging


def add_logging_arguments(parser):
    parser.add_argument(
        "--console_log_level",
        type=str,
        default=None,
        choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
        help="Set the logging level, default is INFO / ログレベルを設定する。デフォルトはINFO",
    )
    parser.add_argument(
        "--console_log_file",
        type=str,
        default=None,
        help="Log to a file instead of stderr / 標準エラー出力ではなくファイルにログを出力する",
    )
    parser.add_argument("--console_log_simple", action="store_true", help="Simple log output / シンプルなログ出力")


def setup_logging(args=None, log_level=None, reset=False):
    if logging.root.handlers:
        if reset:
            # remove all handlers
            for handler in logging.root.handlers[:]:
                logging.root.removeHandler(handler)
        else:
            return

    # log_level can be set by the caller or by the args, the caller has priority. If not set, use INFO
    if log_level is None and args is not None:
        log_level = args.console_log_level
    if log_level is None:
        log_level = "INFO"
    log_level = getattr(logging, log_level)

    msg_init = None
    if args is not None and args.console_log_file:
        handler = logging.FileHandler(args.console_log_file, mode="w")
    else:
        handler = None
        if not args or not args.console_log_simple:
            try:
                from rich.logging import RichHandler
                from rich.console import Console
                from rich.logging import RichHandler

                handler = RichHandler(console=Console(stderr=True))
            except ImportError:
                # print("rich is not installed, using basic logging")
                msg_init = "rich is not installed, using basic logging"

        if handler is None:
            handler = logging.StreamHandler(sys.stdout)  # same as print
            handler.propagate = False

    formatter = logging.Formatter(
        fmt="%(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
    )
    handler.setFormatter(formatter)
    logging.root.setLevel(log_level)
    logging.root.addHandler(handler)

    if msg_init is not None:
        logger = logging.getLogger(__name__)
        logger.info(msg_init)


# endregion

# region PyTorch utils


def swap_weight_devices(layer_to_cpu: nn.Module, layer_to_cuda: nn.Module):
    assert layer_to_cpu.__class__ == layer_to_cuda.__class__

    weight_swap_jobs = []
    for module_to_cpu, module_to_cuda in zip(layer_to_cpu.modules(), layer_to_cuda.modules()):
        if hasattr(module_to_cpu, "weight") and module_to_cpu.weight is not None:
            weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data))

    torch.cuda.current_stream().synchronize()  # this prevents the illegal loss value

    stream = torch.cuda.Stream()
    with torch.cuda.stream(stream):
        # cuda to cpu
        for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
            cuda_data_view.record_stream(stream)
            module_to_cpu.weight.data = cuda_data_view.data.to("cpu", non_blocking=True)

        stream.synchronize()

        # cpu to cuda
        for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
            cuda_data_view.copy_(module_to_cuda.weight.data, non_blocking=True)
            module_to_cuda.weight.data = cuda_data_view

    stream.synchronize()
    torch.cuda.current_stream().synchronize()  # this prevents the illegal loss value


def weighs_to_device(layer: nn.Module, device: torch.device):
    for module in layer.modules():
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data = module.weight.data.to(device, non_blocking=True)


def str_to_dtype(s: Optional[str], default_dtype: Optional[torch.dtype] = None) -> torch.dtype:
    """
    Convert a string to a torch.dtype

    Args:
        s: string representation of the dtype
        default_dtype: default dtype to return if s is None

    Returns:
        torch.dtype: the corresponding torch.dtype

    Raises:
        ValueError: if the dtype is not supported

    Examples:
        >>> str_to_dtype("float32")
        torch.float32
        >>> str_to_dtype("fp32")
        torch.float32
        >>> str_to_dtype("float16")
        torch.float16
        >>> str_to_dtype("fp16")
        torch.float16
        >>> str_to_dtype("bfloat16")
        torch.bfloat16
        >>> str_to_dtype("bf16")
        torch.bfloat16
        >>> str_to_dtype("fp8")
        torch.float8_e4m3fn
        >>> str_to_dtype("fp8_e4m3fn")
        torch.float8_e4m3fn
        >>> str_to_dtype("fp8_e4m3fnuz")
        torch.float8_e4m3fnuz
        >>> str_to_dtype("fp8_e5m2")
        torch.float8_e5m2
        >>> str_to_dtype("fp8_e5m2fnuz")
        torch.float8_e5m2fnuz
    """
    if s is None:
        return default_dtype
    if s in ["bf16", "bfloat16"]:
        return torch.bfloat16
    elif s in ["fp16", "float16"]:
        return torch.float16
    elif s in ["fp32", "float32", "float"]:
        return torch.float32
    elif s in ["fp8_e4m3fn", "e4m3fn", "float8_e4m3fn"]:
        return torch.float8_e4m3fn
    elif s in ["fp8_e4m3fnuz", "e4m3fnuz", "float8_e4m3fnuz"]:
        return torch.float8_e4m3fnuz
    elif s in ["fp8_e5m2", "e5m2", "float8_e5m2"]:
        return torch.float8_e5m2
    elif s in ["fp8_e5m2fnuz", "e5m2fnuz", "float8_e5m2fnuz"]:
        return torch.float8_e5m2fnuz
    elif s in ["fp8", "float8"]:
        return torch.float8_e4m3fn  # default fp8
    else:
        raise ValueError(f"Unsupported dtype: {s}")


def mem_eff_save_file(tensors: Dict[str, torch.Tensor], filename: str, metadata: Dict[str, Any] = None):
    """
    memory efficient save file
    """

    _TYPES = {
        torch.float64: "F64",
        torch.float32: "F32",
        torch.float16: "F16",
        torch.bfloat16: "BF16",
        torch.int64: "I64",
        torch.int32: "I32",
        torch.int16: "I16",
        torch.int8: "I8",
        torch.uint8: "U8",
        torch.bool: "BOOL",
        getattr(torch, "float8_e5m2", None): "F8_E5M2",
        getattr(torch, "float8_e4m3fn", None): "F8_E4M3",
    }
    _ALIGN = 256

    def validate_metadata(metadata: Dict[str, Any]) -> Dict[str, str]:
        validated = {}
        for key, value in metadata.items():
            if not isinstance(key, str):
                raise ValueError(f"Metadata key must be a string, got {type(key)}")
            if not isinstance(value, str):
                print(f"Warning: Metadata value for key '{key}' is not a string. Converting to string.")
                validated[key] = str(value)
            else:
                validated[key] = value
        return validated

    print(f"Using memory efficient save file: {filename}")

    header = {}
    offset = 0
    if metadata:
        header["__metadata__"] = validate_metadata(metadata)
    for k, v in tensors.items():
        if v.numel() == 0:  # empty tensor
            header[k] = {"dtype": _TYPES[v.dtype], "shape": list(v.shape), "data_offsets": [offset, offset]}
        else:
            size = v.numel() * v.element_size()
            header[k] = {"dtype": _TYPES[v.dtype], "shape": list(v.shape), "data_offsets": [offset, offset + size]}
            offset += size

    hjson = json.dumps(header).encode("utf-8")
    hjson += b" " * (-(len(hjson) + 8) % _ALIGN)

    with open(filename, "wb") as f:
        f.write(struct.pack("<Q", len(hjson)))
        f.write(hjson)

        for k, v in tensors.items():
            if v.numel() == 0:
                continue
            if v.is_cuda:
                # Direct GPU to disk save
                with torch.cuda.device(v.device):
                    if v.dim() == 0:  # if scalar, need to add a dimension to work with view
                        v = v.unsqueeze(0)
                    tensor_bytes = v.contiguous().view(torch.uint8)
                    tensor_bytes.cpu().numpy().tofile(f)
            else:
                # CPU tensor save
                if v.dim() == 0:  # if scalar, need to add a dimension to work with view
                    v = v.unsqueeze(0)
                v.contiguous().view(torch.uint8).numpy().tofile(f)


class MemoryEfficientSafeOpen:
    # does not support metadata loading
    def __init__(self, filename):
        self.filename = filename
        self.header, self.header_size = self._read_header()
        self.file = open(filename, "rb")

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.file.close()

    def keys(self):
        return [k for k in self.header.keys() if k != "__metadata__"]

    def get_tensor(self, key):
        if key not in self.header:
            raise KeyError(f"Tensor '{key}' not found in the file")

        metadata = self.header[key]
        offset_start, offset_end = metadata["data_offsets"]

        if offset_start == offset_end:
            tensor_bytes = None
        else:
            # adjust offset by header size
            self.file.seek(self.header_size + 8 + offset_start)
            tensor_bytes = self.file.read(offset_end - offset_start)

        return self._deserialize_tensor(tensor_bytes, metadata)

    def _read_header(self):
        with open(self.filename, "rb") as f:
            header_size = struct.unpack("<Q", f.read(8))[0]
            header_json = f.read(header_size).decode("utf-8")
            return json.loads(header_json), header_size

    def _deserialize_tensor(self, tensor_bytes, metadata):
        dtype = self._get_torch_dtype(metadata["dtype"])
        shape = metadata["shape"]

        if tensor_bytes is None:
            byte_tensor = torch.empty(0, dtype=torch.uint8)
        else:
            tensor_bytes = bytearray(tensor_bytes)  # make it writable
            byte_tensor = torch.frombuffer(tensor_bytes, dtype=torch.uint8)

        # process float8 types
        if metadata["dtype"] in ["F8_E5M2", "F8_E4M3"]:
            return self._convert_float8(byte_tensor, metadata["dtype"], shape)

        # convert to the target dtype and reshape
        return byte_tensor.view(dtype).reshape(shape)

    @staticmethod
    def _get_torch_dtype(dtype_str):
        dtype_map = {
            "F64": torch.float64,
            "F32": torch.float32,
            "F16": torch.float16,
            "BF16": torch.bfloat16,
            "I64": torch.int64,
            "I32": torch.int32,
            "I16": torch.int16,
            "I8": torch.int8,
            "U8": torch.uint8,
            "BOOL": torch.bool,
        }
        # add float8 types if available
        if hasattr(torch, "float8_e5m2"):
            dtype_map["F8_E5M2"] = torch.float8_e5m2
        if hasattr(torch, "float8_e4m3fn"):
            dtype_map["F8_E4M3"] = torch.float8_e4m3fn
        return dtype_map.get(dtype_str)

    @staticmethod
    def _convert_float8(byte_tensor, dtype_str, shape):
        if dtype_str == "F8_E5M2" and hasattr(torch, "float8_e5m2"):
            return byte_tensor.view(torch.float8_e5m2).reshape(shape)
        elif dtype_str == "F8_E4M3" and hasattr(torch, "float8_e4m3fn"):
            return byte_tensor.view(torch.float8_e4m3fn).reshape(shape)
        else:
            # # convert to float16 if float8 is not supported
            # print(f"Warning: {dtype_str} is not supported in this PyTorch version. Converting to float16.")
            # return byte_tensor.view(torch.uint8).to(torch.float16).reshape(shape)
            raise ValueError(f"Unsupported float8 type: {dtype_str} (upgrade PyTorch to support float8 types)")


def load_safetensors(
    path: str, device: Union[str, torch.device], disable_mmap: bool = False, dtype: Optional[torch.dtype] = torch.float32
) -> dict[str, torch.Tensor]:
    if disable_mmap:
        # return safetensors.torch.load(open(path, "rb").read())
        # use experimental loader
        # logger.info(f"Loading without mmap (experimental)")
        state_dict = {}
        with MemoryEfficientSafeOpen(path) as f:
            for key in f.keys():
                state_dict[key] = f.get_tensor(key).to(device, dtype=dtype)
        return state_dict
    else:
        try:
            state_dict = load_file(path, device=device)
        except:
            state_dict = load_file(path)  # prevent device invalid Error
        if dtype is not None:
            for key in state_dict.keys():
                state_dict[key] = state_dict[key].to(dtype=dtype)
        return state_dict


# endregion

# region Image utils


def pil_resize(image, size, interpolation=Image.LANCZOS):
    has_alpha = image.shape[2] == 4 if len(image.shape) == 3 else False

    if has_alpha:
        pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA))
    else:
        pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

    resized_pil = pil_image.resize(size, interpolation)

    # Convert back to cv2 format
    if has_alpha:
        resized_cv2 = cv2.cvtColor(np.array(resized_pil), cv2.COLOR_RGBA2BGRA)
    else:
        resized_cv2 = cv2.cvtColor(np.array(resized_pil), cv2.COLOR_RGB2BGR)

    return resized_cv2


# endregion

# TODO make inf_utils.py
# region Gradual Latent hires fix


class GradualLatent:
    def __init__(
        self,
        ratio,
        start_timesteps,
        every_n_steps,
        ratio_step,
        s_noise=1.0,
        gaussian_blur_ksize=None,
        gaussian_blur_sigma=0.5,
        gaussian_blur_strength=0.5,
        unsharp_target_x=True,
    ):
        self.ratio = ratio
        self.start_timesteps = start_timesteps
        self.every_n_steps = every_n_steps
        self.ratio_step = ratio_step
        self.s_noise = s_noise
        self.gaussian_blur_ksize = gaussian_blur_ksize
        self.gaussian_blur_sigma = gaussian_blur_sigma
        self.gaussian_blur_strength = gaussian_blur_strength
        self.unsharp_target_x = unsharp_target_x

    def __str__(self) -> str:
        return (
            f"GradualLatent(ratio={self.ratio}, start_timesteps={self.start_timesteps}, "
            + f"every_n_steps={self.every_n_steps}, ratio_step={self.ratio_step}, s_noise={self.s_noise}, "
            + f"gaussian_blur_ksize={self.gaussian_blur_ksize}, gaussian_blur_sigma={self.gaussian_blur_sigma}, gaussian_blur_strength={self.gaussian_blur_strength}, "
            + f"unsharp_target_x={self.unsharp_target_x})"
        )

    def apply_unshark_mask(self, x: torch.Tensor):
        if self.gaussian_blur_ksize is None:
            return x
        blurred = transforms.functional.gaussian_blur(x, self.gaussian_blur_ksize, self.gaussian_blur_sigma)
        # mask = torch.sigmoid((x - blurred) * self.gaussian_blur_strength)
        mask = (x - blurred) * self.gaussian_blur_strength
        sharpened = x + mask
        return sharpened

    def interpolate(self, x: torch.Tensor, resized_size, unsharp=True):
        org_dtype = x.dtype
        if org_dtype == torch.bfloat16:
            x = x.float()

        x = torch.nn.functional.interpolate(x, size=resized_size, mode="bicubic", align_corners=False).to(dtype=org_dtype)

        # apply unsharp mask / アンシャープマスクを適用する
        if unsharp and self.gaussian_blur_ksize:
            x = self.apply_unshark_mask(x)

        return x


class EulerAncestralDiscreteSchedulerGL(EulerAncestralDiscreteScheduler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.resized_size = None
        self.gradual_latent = None

    def set_gradual_latent_params(self, size, gradual_latent: GradualLatent):
        self.resized_size = size
        self.gradual_latent = gradual_latent

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.

        Returns:
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.

        """

        if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            # logger.warning(
            print(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`")

        sigma_from = self.sigmas[self.step_index]
        sigma_to = self.sigmas[self.step_index + 1]
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma

        dt = sigma_down - sigma

        device = model_output.device
        if self.resized_size is None:
            prev_sample = sample + derivative * dt

            noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=device, generator=generator
            )
            s_noise = 1.0
        else:
            print("resized_size", self.resized_size, "model_output.shape", model_output.shape, "sample.shape", sample.shape)
            s_noise = self.gradual_latent.s_noise

            if self.gradual_latent.unsharp_target_x:
                prev_sample = sample + derivative * dt
                prev_sample = self.gradual_latent.interpolate(prev_sample, self.resized_size)
            else:
                sample = self.gradual_latent.interpolate(sample, self.resized_size)
                derivative = self.gradual_latent.interpolate(derivative, self.resized_size, unsharp=False)
                prev_sample = sample + derivative * dt

            noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
                (model_output.shape[0], model_output.shape[1], self.resized_size[0], self.resized_size[1]),
                dtype=model_output.dtype,
                device=device,
                generator=generator,
            )

        prev_sample = prev_sample + noise * sigma_up * s_noise

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return EulerAncestralDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)


# endregion