MakeAnything / gradio_app.py
yiren98's picture
main
98973cb
raw
history blame
10.2 kB
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
from accelerate import Accelerator
import os
import time
from torchvision import transforms
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
import logging
from huggingface_hub import login
from huggingface_hub import hf_hub_download
# Set up logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token)
# Model paths dynamically retrieved using selected model
model_paths = {
'Wood Sculpture': {
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
'BASE_FILE': "flux1-dev-fp8.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_4f_wood_sculpture.safetensors"
},
'LEGO': {
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
'BASE_FILE': "flux1-dev-fp8.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_lego.safetensors"
},
'Sketch': {
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
'BASE_FILE': "flux1-dev-fp8.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_sketch.safetensors"
},
'Portrait': {
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
'BASE_FILE': "flux1-dev-fp8.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_portrait.safetensors"
}
}
# Common paths
clip_repo_id = "comfyanonymous/flux_text_encoders"
t5xxl_file = "t5xxl_fp8_e4m3fn.safetensors"
clip_l_file = "clip_l.safetensors"
ae_repo_id = "black-forest-labs/FLUX.1-dev"
ae_file = "ae.safetensors"
# Model placeholders
model = None
clip_l = None
t5xxl = None
ae = None
lora_model = None
# Function to load a file from Hugging Face Hub
def download_file(repo_id, file_name):
return hf_hub_download(repo_id=repo_id, filename=file_name)
# Load model function
def load_target_model(selected_model):
global model, clip_l, t5xxl, ae, lora_model
# Fetch paths based on the selected model
model_path = model_paths[selected_model]
base_checkpoint_repo = model_path['BASE_FLUX_CHECKPOINT']
base_checkpoint_file = model_path['BASE_FILE']
lora_repo = model_path['LORA_REPO']
lora_file = model_path['LORA_FILE']
# Download necessary files
BASE_FLUX_CHECKPOINT = download_file(base_checkpoint_repo, base_checkpoint_file)
CLIP_L_PATH = download_file(clip_repo_id, clip_l_file)
T5XXL_PATH = download_file(clip_repo_id, t5xxl_file)
AE_PATH = download_file(ae_repo_id, ae_file)
LORA_WEIGHTS_PATH = download_file(lora_repo, lora_file)
logger.info("Loading models...")
try:
_, model = flux_utils.load_flow_model(
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False
)
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False)
clip_l.eval()
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False)
t5xxl.eval()
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False)
logger.info("Models loaded successfully.")
return model, [clip_l, t5xxl], ae
except Exception as e:
logger.error(f"Error loading models: {e}")
raise
# Image pre-processing (resize and padding)
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
# Convert to RGB to remove transparency, fill with white background if necessary
if img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info):
background = Image.new("RGB", img.size, (fill, fill, fill))
background.paste(img, mask=img.split()[-1]) # Use alpha channel as mask
img = background
if width == height:
img = img.resize((self.size, self.size), Image.LANCZOS)
else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
# The function to generate image from a prompt and conditional image
@spaces.GPU(duration=180)
def infer(prompt, sample_image, frame_num, seed=0):
global model, clip_l, t5xxl, ae, lora_model
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None:
logger.error("Models not loaded. Please load the models first.")
return None
logger.info(f"Started generating image with prompt: {prompt}")
lora_model.to("cuda")
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# # Load models
# model, [clip_l, t5xxl], ae = load_target_model()
# # LoRA
# multiplier = 1.0
# weights_sd = load_file(LORA_WEIGHTS_PATH)
# lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
# True)
# lora_model.apply_to([clip_l, t5xxl], model)
# info = lora_model.load_state_dict(weights_sd, strict=True)
# logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
# lora_model.eval()
# lora_model.to(device)
logger.debug(f"Using seed: {seed}")
# Preprocess the conditional image
resize_transform = ResizeWithPadding(size=512) if frame_num == 4 else ResizeWithPadding(size=352)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
image = img_transforms(np.array(sample_image, dtype=np.uint8)).unsqueeze(0).to(
device=device,
dtype=torch.bfloat16
)
logger.debug("Conditional image preprocessed.")
# Encode the image to latents
ae.to(device)
latents = ae.encode(image)
logger.debug("Image encoded to latents.")
conditions = {}
conditions[prompt] = latents.to("cpu")
ae.to("cpu")
clip_l.to(device)
t5xxl.to(device)
# Encode the prompt
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
tokens_and_masks = tokenize_strategy.tokenize(prompt)
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True)
logger.debug("Prompt encoded.")
# Prepare the noise and other parameters
width = 1024 if frame_num == 4 else 1056
height = 1024 if frame_num == 4 else 1056
height = max(64, height - height % 16)
width = max(64, width - width % 16)
packed_latent_height = height // 16
packed_latent_width = width // 16
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16)
logger.debug("Noise prepared.")
# Generate the image
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device)
t5_attn_mask = t5_attn_mask.to(device)
ae_outputs = conditions[prompt]
logger.debug("Image generation parameters set.")
args = lambda: None
args.frame_num = frame_num
clip_l.to("cpu")
t5xxl.to("cpu")
model.to(device)
# Run the denoising process
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(
args, model, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=1.0, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs
)
logger.debug("Denoising process completed.")
# Decode the final image
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
model.to("cpu")
ae.to(device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
logger.debug("Latents decoded into image.")
ae.to("cpu")
# Convert the tensor to an image
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
logger.info("Image generation completed.")
return generated_image
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## FLUX Image Generation")
with gr.Row():
# Dropdown for selecting the recraft model
recraft_model = gr.Dropdown(
label="Select Recraft Model",
choices=["Wood Sculpture", "LEGO", "Sketch", "Portrait"],
value="Wood Sculpture"
)
# Input for the prompt
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=1)
# File upload for image
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
# Frame number selection
frame_num = gr.Radio([4, 9], label="Select Frame Number", value=4)
# Seed
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=0)
# Load Model Button
load_button = gr.Button("Load Model")
# Run Button
run_button = gr.Button("Generate Image")
# Output result
result_image = gr.Image(label="Generated Image")
# Load model button action
load_button.click(fn=load_target_model, inputs=[recraft_model], outputs=[])
# Run Button
run_button.click(fn=infer, inputs=[prompt, sample_image, frame_num, seed], outputs=[result_image])
# Launch the Gradio app
demo.launch()