MakeAnything / library /strategy_sd.py
yiren98's picture
Upload 98 files
abd09b6 verified
raw
history blame
8.23 kB
import glob
import os
from typing import Any, List, Optional, Tuple, Union
import torch
from transformers import CLIPTokenizer
from library import train_util
from library.strategy_base import LatentsCachingStrategy, TokenizeStrategy, TextEncodingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
TOKENIZER_ID = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_ID = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ
class SdTokenizeStrategy(TokenizeStrategy):
def __init__(self, v2: bool, max_length: Optional[int], tokenizer_cache_dir: Optional[str] = None) -> None:
"""
max_length does not include <BOS> and <EOS> (None, 75, 150, 225)
"""
logger.info(f"Using {'v2' if v2 else 'v1'} tokenizer")
if v2:
self.tokenizer = self._load_tokenizer(
CLIPTokenizer, V2_STABLE_DIFFUSION_ID, subfolder="tokenizer", tokenizer_cache_dir=tokenizer_cache_dir
)
else:
self.tokenizer = self._load_tokenizer(CLIPTokenizer, TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
if max_length is None:
self.max_length = self.tokenizer.model_max_length
else:
self.max_length = max_length + 2
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
return [torch.stack([self._get_input_ids(self.tokenizer, t, self.max_length) for t in text], dim=0)]
def tokenize_with_weights(self, text: str | List[str]) -> Tuple[List[torch.Tensor]]:
text = [text] if isinstance(text, str) else text
tokens_list = []
weights_list = []
for t in text:
tokens, weights = self._get_input_ids(self.tokenizer, t, self.max_length, weighted=True)
tokens_list.append(tokens)
weights_list.append(weights)
return [torch.stack(tokens_list, dim=0)], [torch.stack(weights_list, dim=0)]
class SdTextEncodingStrategy(TextEncodingStrategy):
def __init__(self, clip_skip: Optional[int] = None) -> None:
self.clip_skip = clip_skip
def encode_tokens(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor]
) -> List[torch.Tensor]:
text_encoder = models[0]
tokens = tokens[0]
sd_tokenize_strategy = tokenize_strategy # type: SdTokenizeStrategy
# tokens: b,n,77
b_size = tokens.size()[0]
max_token_length = tokens.size()[1] * tokens.size()[2]
model_max_length = sd_tokenize_strategy.tokenizer.model_max_length
tokens = tokens.reshape((-1, model_max_length)) # batch_size*3, 77
tokens = tokens.to(text_encoder.device)
if self.clip_skip is None:
encoder_hidden_states = text_encoder(tokens)[0]
else:
enc_out = text_encoder(tokens, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out["hidden_states"][-self.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
# bs*3, 77, 768 or 1024
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if max_token_length != model_max_length:
v1 = sd_tokenize_strategy.tokenizer.pad_token_id == sd_tokenize_strategy.tokenizer.eos_token_id
if not v1:
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, model_max_length):
chunk = encoder_hidden_states[:, i : i + model_max_length - 2] # <BOS> の後から 最後の前まで
if i > 0:
for j in range(len(chunk)):
if tokens[j, 1] == sd_tokenize_strategy.tokenizer.eos_token:
# 空、つまり <BOS> <EOS> <PAD> ...のパターン
chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
encoder_hidden_states = torch.cat(states_list, dim=1)
else:
# v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, model_max_length):
states_list.append(encoder_hidden_states[:, i : i + model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS>
encoder_hidden_states = torch.cat(states_list, dim=1)
return [encoder_hidden_states]
def encode_tokens_with_weights(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens_list: List[torch.Tensor],
weights_list: List[torch.Tensor],
) -> List[torch.Tensor]:
encoder_hidden_states = self.encode_tokens(tokenize_strategy, models, tokens_list)[0]
weights = weights_list[0].to(encoder_hidden_states.device)
# apply weights
if weights.shape[1] == 1: # no max_token_length
# weights: ((b, 1, 77), (b, 1, 77)), hidden_states: (b, 77, 768), (b, 77, 768)
encoder_hidden_states = encoder_hidden_states * weights.squeeze(1).unsqueeze(2)
else:
# weights: ((b, n, 77), (b, n, 77)), hidden_states: (b, n*75+2, 768), (b, n*75+2, 768)
for i in range(weights.shape[1]):
encoder_hidden_states[:, i * 75 + 1 : i * 75 + 76] = encoder_hidden_states[:, i * 75 + 1 : i * 75 + 76] * weights[
:, i, 1:-1
].unsqueeze(-1)
return [encoder_hidden_states]
class SdSdxlLatentsCachingStrategy(LatentsCachingStrategy):
# sd and sdxl share the same strategy. we can make them separate, but the difference is only the suffix.
# and we keep the old npz for the backward compatibility.
SD_OLD_LATENTS_NPZ_SUFFIX = ".npz"
SD_LATENTS_NPZ_SUFFIX = "_sd.npz"
SDXL_LATENTS_NPZ_SUFFIX = "_sdxl.npz"
def __init__(self, sd: bool, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check)
self.sd = sd
self.suffix = (
SdSdxlLatentsCachingStrategy.SD_LATENTS_NPZ_SUFFIX if sd else SdSdxlLatentsCachingStrategy.SDXL_LATENTS_NPZ_SUFFIX
)
@property
def cache_suffix(self) -> str:
return self.suffix
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
# support old .npz
old_npz_file = os.path.splitext(absolute_path)[0] + SdSdxlLatentsCachingStrategy.SD_OLD_LATENTS_NPZ_SUFFIX
if os.path.exists(old_npz_file):
return old_npz_file
return os.path.splitext(absolute_path)[0] + f"_{image_size[0]:04d}x{image_size[1]:04d}" + self.suffix
def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool):
return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask)
# TODO remove circular dependency for ImageInfo
def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
encode_by_vae = lambda img_tensor: vae.encode(img_tensor).latent_dist.sample()
vae_device = vae.device
vae_dtype = vae.dtype
self._default_cache_batch_latents(encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop)
if not train_util.HIGH_VRAM:
train_util.clean_memory_on_device(vae.device)