Spaces:
Runtime error
Runtime error
Update gradio_app.py
Browse files- gradio_app.py +8 -7
gradio_app.py
CHANGED
@@ -18,6 +18,8 @@ logging.basicConfig(level=logging.DEBUG)
|
|
18 |
|
19 |
# Ensure necessary devices are available
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
21 |
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
|
22 |
|
23 |
# Model paths (replace these with your actual model paths)
|
@@ -124,7 +126,7 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
124 |
info = lora_model.load_state_dict(weights_sd, strict=True)
|
125 |
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
|
126 |
lora_model.eval()
|
127 |
-
lora_model.to(
|
128 |
|
129 |
# Process the seed
|
130 |
if randomize_seed:
|
@@ -145,7 +147,7 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
145 |
logger.debug("Conditional image preprocessed.")
|
146 |
|
147 |
# Encode the image to latents
|
148 |
-
ae.to(
|
149 |
latents = ae.encode(image)
|
150 |
logger.debug("Image encoded to latents.")
|
151 |
|
@@ -153,8 +155,8 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
153 |
conditions[prompt] = latents.to("cpu")
|
154 |
|
155 |
ae.to("cpu")
|
156 |
-
clip_l.to(
|
157 |
-
t5xxl.to(
|
158 |
|
159 |
# Encode the prompt
|
160 |
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
|
@@ -192,8 +194,7 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
192 |
clip_l.to("cpu")
|
193 |
t5xxl.to("cpu")
|
194 |
|
195 |
-
|
196 |
-
model.to("cuda")
|
197 |
|
198 |
# import pdb
|
199 |
# pdb.set_trace()
|
@@ -209,7 +210,7 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
209 |
x = x.float()
|
210 |
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
|
211 |
model.to("cpu")
|
212 |
-
ae.to(
|
213 |
with accelerator.autocast(), torch.no_grad():
|
214 |
x = ae.decode(x)
|
215 |
logger.debug("Latents decoded into image.")
|
|
|
18 |
|
19 |
# Ensure necessary devices are available
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
logger.info("device: ", device)
|
22 |
+
|
23 |
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
|
24 |
|
25 |
# Model paths (replace these with your actual model paths)
|
|
|
126 |
info = lora_model.load_state_dict(weights_sd, strict=True)
|
127 |
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
|
128 |
lora_model.eval()
|
129 |
+
lora_model.to(device)
|
130 |
|
131 |
# Process the seed
|
132 |
if randomize_seed:
|
|
|
147 |
logger.debug("Conditional image preprocessed.")
|
148 |
|
149 |
# Encode the image to latents
|
150 |
+
ae.to(device)
|
151 |
latents = ae.encode(image)
|
152 |
logger.debug("Image encoded to latents.")
|
153 |
|
|
|
155 |
conditions[prompt] = latents.to("cpu")
|
156 |
|
157 |
ae.to("cpu")
|
158 |
+
clip_l.to(device)
|
159 |
+
t5xxl.to(device)
|
160 |
|
161 |
# Encode the prompt
|
162 |
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
|
|
|
194 |
clip_l.to("cpu")
|
195 |
t5xxl.to("cpu")
|
196 |
|
197 |
+
model.to(device)
|
|
|
198 |
|
199 |
# import pdb
|
200 |
# pdb.set_trace()
|
|
|
210 |
x = x.float()
|
211 |
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
|
212 |
model.to("cpu")
|
213 |
+
ae.to(device)
|
214 |
with accelerator.autocast(), torch.no_grad():
|
215 |
x = ae.decode(x)
|
216 |
logger.debug("Latents decoded into image.")
|