Spaces:
Runtime error
Runtime error
File size: 14,285 Bytes
a042cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
from omegaconf import OmegaConf
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from motionclone.models.unet import UNet3DConditionModel
from motionclone.models.sparse_controlnet import SparseControlNetModel
from motionclone.pipelines.pipeline_animation import AnimationPipeline
from motionclone.utils.util import load_weights, auto_download
from diffusers.utils.import_utils import is_xformers_available
from motionclone.utils.motionclone_functions import *
import json
from motionclone.utils.xformer_attention import *
import os
import numpy as np
import imageio
import shutil
import subprocess
from types import SimpleNamespace
# 模型下载逻辑
def download_weights():
try:
# 创建模型目录
os.makedirs("models", exist_ok=True)
os.makedirs("models/DreamBooth_LoRA", exist_ok=True)
os.makedirs("models/Motion_Module", exist_ok=True)
os.makedirs("models/SparseCtrl", exist_ok=True)
# 下载 Stable Diffusion 模型
if not os.path.exists("models/StableDiffusion"):
subprocess.run(["git", "clone", "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5", "models/StableDiffusion"])
# 下载 DreamBooth LoRA 模型
if not os.path.exists("models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"):
subprocess.run(["wget", "https://huggingface.co/svjack/Realistic-Vision-V6.0-B1/resolve/main/realisticVisionV60B1_v51VAE.safetensors", "-O", "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"])
# 下载 Motion Module 模型
if not os.path.exists("models/Motion_Module/v3_sd15_mm.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt", "-O", "models/Motion_Module/v3_sd15_mm.ckpt"])
if not os.path.exists("models/Motion_Module/v3_sd15_adapter.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt", "-O", "models/Motion_Module/v3_sd15_adapter.ckpt"])
# 下载 SparseCtrl 模型
if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_rgb.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"])
if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"):
subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_scribble.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"])
print("Weights downloaded successfully.")
except Exception as e:
print(f"Error downloading weights: {e}")
# 下载权重
download_weights()
# 模型初始化逻辑
def initialize_models(pretrained_model_path, config):
# 设置设备
adopted_dtype = torch.float16
device = "cuda"
set_all_seed(42)
# 加载模型组件
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype)
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype)
# 更新配置
config["width"] = config.get("W", 512)
config["height"] = config.get("H", 512)
config["video_length"] = config.get("L", 16)
# 加载模型配置
model_config = OmegaConf.load(config.get("model_config", ""))
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs)).to(device).to(dtype=adopted_dtype)
# 加载 controlnet 模型
controlnet = None
if config.get("controlnet_path", "") != "":
assert config.get("controlnet_config", "") != ""
unet.config.num_attention_heads = 8
unet.config.projection_class_embeddings_input_dim = None
controlnet_config = OmegaConf.load(config["controlnet_config"])
controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})).to(device).to(dtype=adopted_dtype)
auto_download(config["controlnet_path"], is_dreambooth_lora=False)
print(f"loading controlnet checkpoint from ", config["controlnet_path"])
controlnet_state_dict = torch.load(config["controlnet_path"], map_location="cpu")
controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict
controlnet_state_dict = {name: param for name, param in controlnet_state_dict.items() if "pos_encoder.pe" not in name}
controlnet_state_dict.pop("animatediff_config", "")
controlnet.load_state_dict(controlnet_state_dict)
del controlnet_state_dict
# 启用 xformers
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
# 创建 pipeline
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=controlnet,
scheduler=DDIMScheduler(**model_config.noise_scheduler_kwargs),
).to(device)
# 加载权重
pipeline = load_weights(
pipeline,
motion_module_path=config.get("motion_module", ""),
adapter_lora_path=config.get("adapter_lora_path", ""),
adapter_lora_scale=config.get("adapter_lora_scale", 1.0),
dreambooth_model_path=config.get("dreambooth_path", ""),
).to(device)
pipeline.text_encoder.to(dtype=adopted_dtype)
# 加载自定义函数
pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler)
pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler)
pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet)
pipeline.sample_video = sample_video.__get__(pipeline)
pipeline.single_step_video = single_step_video.__get__(pipeline)
pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline)
pipeline.add_noise = add_noise.__get__(pipeline)
pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline)
pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline)
# 冻结 UNet 和 ControlNet 参数
for param in pipeline.unet.parameters():
param.requires_grad = False
if pipeline.controlnet is not None:
for param in pipeline.controlnet.parameters():
param.requires_grad = False
pipeline.input_config, pipeline.unet.input_config = SimpleNamespace(**config), SimpleNamespace(**config)
pipeline.unet = prep_unet_attention(pipeline.unet, config.get("motion_guidance_blocks", []))
pipeline.unet = prep_unet_conv(pipeline.unet)
return pipeline
# 硬编码的配置值
config = {
"motion_module": "models/Motion_Module/v3_sd15_mm.ckpt",
"dreambooth_path": "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors",
"model_config": "configs/model_config/model_config.yaml",
"controlnet_path": "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt",
"controlnet_config": "configs/sparsectrl/latent_condition.yaml",
"adapter_lora_path": "models/Motion_Module/v3_sd15_adapter.ckpt",
"W": 512,
"H": 512,
"L": 16,
"motion_guidance_blocks": ['up_blocks.1'],
}
# 初始化模型
pretrained_model_path = "models/StableDiffusion"
pipeline = initialize_models(pretrained_model_path, config)
# 视频生成函数
def generate_video(uploaded_video, condition_images, new_prompt, seed, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step):
# 更新配置
config.update({
"cfg_scale": cfg_scale,
"negative_prompt": negative_prompt,
"positive_prompt": positive_prompt,
"inference_steps": inference_steps,
"guidance_scale": guidance_scale,
"guidance_steps": guidance_steps,
"warm_up_steps": warm_up_steps,
"cool_up_steps": cool_up_steps,
"motion_guidance_weight": motion_guidance_weight,
#"motion_guidance_blocks": motion_guidance_blocks,
"add_noise_step": add_noise_step
})
# 设置环境变量
os.environ["CUDA_VISIBLE_DEVICES"] = visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0))
device = pipeline.device
# 创建保存目录
if not os.path.exists(generated_videos_save_dir):
os.makedirs(generated_videos_save_dir)
if not os.path.exists(motion_representation_save_dir):
os.makedirs(motion_representation_save_dir)
# 处理上传的视频
if uploaded_video is not None:
pipeline.scheduler.customized_set_timesteps(config["inference_steps"], config["guidance_steps"], config["guidance_scale"], device=device, timestep_spacing_type="uneven")
# 将上传的视频保存到指定路径
video_path = os.path.join(generated_videos_save_dir, os.path.basename(uploaded_video))
shutil.copy2(uploaded_video, video_path)
# 更新配置
config["video_path"] = video_path
config["condition_image_path_list"] = condition_images
config["image_index"] = [0] * len(condition_images)
config["new_prompt"] = new_prompt + config.get("positive_prompt", "")
config["controlnet_scale"] = 1.0
pipeline.input_config, pipeline.unet.input_config = SimpleNamespace(**config), SimpleNamespace(**config)
# 提取运动表示
seed_motion = seed if seed is not None else 76739
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed_motion)
motion_representation_path = os.path.join(motion_representation_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + '.pt')
pipeline.obtain_motion_representation(generator=generator, motion_representation_path=motion_representation_path, use_controlnet=True)
# 生成视频
seed = seed_motion
generator = torch.Generator(device=pipeline.device)
generator.manual_seed(seed)
pipeline.input_config.seed = seed
videos = pipeline.sample_video(generator=generator, add_controlnet=True)
videos = rearrange(videos, "b c f h w -> b f h w c")
save_path = os.path.join(generated_videos_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + "_" + config["new_prompt"].strip().replace(' ', '_') + str(seed_motion) + "_" + str(seed) + '.mp4')
videos_uint8 = (videos[0] * 255).astype(np.uint8)
imageio.mimwrite(save_path, videos_uint8, fps=8)
print(save_path, "is done")
return save_path
else:
return "No video uploaded."
# 使用 Gradio 构建界面
with gr.Blocks() as demo:
gr.Markdown("# MotionClone Video Generation")
with gr.Row():
with gr.Column():
uploaded_video = gr.Video(label="Upload Video")
condition_images = gr.Files(label="Condition Images")
new_prompt = gr.Textbox(label="New Prompt", value="A beautiful scene")
seed = gr.Number(label="Seed", value=76739)
generate_button = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video(label="Generated Video")
with gr.Accordion("Advanced Settings", open=False):
motion_representation_save_dir = gr.Textbox(label="Motion Representation Save Dir", value="motion_representation/")
generated_videos_save_dir = gr.Textbox(label="Generated Videos Save Dir", value="generated_videos/")
visible_gpu = gr.Textbox(label="Visible GPU", value="0")
without_xformers = gr.Checkbox(label="Without Xformers", value=False)
cfg_scale = gr.Number(label="CFG Scale", value=7.5)
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, deformed, noisy, blurry, distorted, out of focus, bad anatomy, extra limbs, poorly drawn face, poorly drawn hands, missing fingers")
positive_prompt = gr.Textbox(label="Positive Prompt", value="8k, high detailed, best quality, film grain, Fujifilm XT3")
inference_steps = gr.Number(label="Inference Steps", value=100)
guidance_scale = gr.Number(label="Guidance Scale", value=0.3)
guidance_steps = gr.Number(label="Guidance Steps", value=40)
warm_up_steps = gr.Number(label="Warm Up Steps", value=10)
cool_up_steps = gr.Number(label="Cool Up Steps", value=10)
motion_guidance_weight = gr.Number(label="Motion Guidance Weight", value=2000)
motion_guidance_blocks = gr.Textbox(label="Motion Guidance Blocks", value="['up_blocks.1']")
add_noise_step = gr.Number(label="Add Noise Step", value=400)
# 绑定生成函数
generate_button.click(
generate_video,
inputs=[
uploaded_video, condition_images, new_prompt, seed, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step
],
outputs=output_video
)
# 添加示例
examples = [
{"video_path": "reference_videos/camera_zoom_out.mp4", "condition_image_paths": ["condition_images/rgb/dog_on_grass.png"], "new_prompt": "Dog, lying on the grass", "seed": 42}
]
examples = list(map(lambda d: [d["video_path"], d["condition_image_paths"], d["new_prompt"], d["seed"]], examples))
gr.Examples(
examples=examples,
inputs=[uploaded_video, condition_images, new_prompt, seed],
outputs=output_video,
fn=generate_video,
cache_examples=False
)
# 启动应用
demo.launch(share=True)
|