File size: 4,267 Bytes
152a369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7051ad3
152a369
b41cec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152a369
ce8aef9
152a369
 
b41cec1
 
21af96b
152a369
 
 
7051ad3
 
 
 
 
 
 
 
b41cec1
 
 
 
 
 
 
 
 
 
 
 
 
 
152a369
b41cec1
 
 
 
 
152a369
b41cec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152a369
 
b41cec1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import pixeltable as pxt
from pixeltable.functions.huggingface import clip_image, clip_text
from pixeltable.iterators import FrameIterator
import PIL.Image
import os

# Embedding functions
@pxt.expr_udf
def embed_image(img: PIL.Image.Image):
    return clip_image(img, model_id='openai/clip-vit-base-patch32')

@pxt.expr_udf
def str_embed(s: str):
    return clip_text(s, model_id='openai/clip-vit-base-patch32')

# Process video and create index
def process_video(video_file, progress=gr.Progress()):

    progress(0, desc="Initializing...")

    # Pixeltable setup
    pxt.drop_dir('video_search', force=True)
    pxt.create_dir('video_search')

    video_table = pxt.create_table('video_search.videos', {'video': pxt.VideoType()})

    frames_view = pxt.create_view(
        'video_search.frames', 
        video_table, 
        iterator=FrameIterator.create(video=video_table.video, fps=1)
    )

    progress(0.2, desc="Inserting video...")
    video_table.insert([{'video': video_file.name}])
    
    progress(0.4, desc="Creating embedding index...")
    frames_view.add_embedding_index('frame', string_embed=str_embed, image_embed=embed_image)

    progress(1.0, desc="Processing complete")
    return "Good news! Your video has been processed.  Easily find the moments you need by searching with text or images."

# Perform similarity search
def similarity_search(query, search_type, num_results, progress=gr.Progress()):
    
    frames_view = pxt.get_table('video_search.frames')
    
    progress(0.5, desc="Performing search...")
    if search_type == "Text":
        sim = frames_view.frame.similarity(query)
    else:  # Image search
        sim = frames_view.frame.similarity(query)
    
    results = frames_view.order_by(sim, asc=False).limit(num_results).select(frames_view.frame, sim=sim).collect()
    
    progress(1.0, desc="Search complete")

    return [row['frame'] for row in results]

# Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.Markdown(
        """
        <div style= margin-bottom: 20px;">
            <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
            <h2>Text and Image similarity search on video frames with embedding indexes</h2>
        </div>
        """
    )
    gr.HTML(
    """
    <p>
        <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.
    </p>
    """
    )

    
    with gr.Row():
        with gr.Column(scale=1):
            video_file = gr.File(label="Upload Video")
            process_button = gr.Button("Process Video")
            process_output = gr.Textbox(label="Status", lines=2)
            
            gr.Markdown("---")
            
            search_type = gr.Radio(["Text", "Image"], label="Search Type", value="Text")
            text_input = gr.Textbox(label="Text Query")
            image_input = gr.Image(label="Image Query", type="pil", visible=False)
            num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
            search_button = gr.Button("Search")
        
        with gr.Column(scale=2):
            results_gallery = gr.Gallery(label="Search Results", columns=3)
    
    def update_search_input(choice):
        return gr.update(visible=choice=="Text"), gr.update(visible=choice=="Image")

    search_type.change(update_search_input, search_type, [text_input, image_input])
    
    process_button.click(
        process_video,
        inputs=[video_file],
        outputs=[process_output]
    )
    
    def perform_search(search_type, text_query, image_query, num_results):
        query = text_query if search_type == "Text" else image_query
        return similarity_search(query, search_type, num_results)

    search_button.click(
        perform_search,
        inputs=[search_type, text_input, image_input, num_results],
        outputs=[results_gallery]
    )

if __name__ == "__main__":
    demo.launch()