Spaces:
Runtime error
Runtime error
File size: 13,269 Bytes
91fb4ef 32b4f0f 91fb4ef 32b4f0f 91fb4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
from dataclasses import dataclass, field
from typing import Dict, Any, Optional, List, Tuple
from pathlib import Path
from utils import parse_bool_env
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))
# Base storage path
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data'))
# Subdirectories for different data types
VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split" # Raw uploaded/downloaded files
STAGING_PATH = STORAGE_PATH / "staging" # This is where files that are captioned or need captioning are waiting
TRAINING_PATH = STORAGE_PATH / "training" # Folder containing the final training dataset
TRAINING_VIDEOS_PATH = TRAINING_PATH / "videos" # Captioned clips ready for training
MODEL_PATH = STORAGE_PATH / "model" # Model checkpoints and files
OUTPUT_PATH = STORAGE_PATH / "output" # Training outputs and logs
LOG_FILE_PATH = OUTPUT_PATH / "last_session.log"
# On the production server we can afford to preload the big model
PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL'))
CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2"
DEFAULT_PROMPT_PREFIX = "In the style of TOK, "
# This is only use to debug things in local
USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL'))
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full description of the following video: camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings"
# Create directories
STORAGE_PATH.mkdir(parents=True, exist_ok=True)
VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True)
STAGING_PATH.mkdir(parents=True, exist_ok=True)
TRAINING_PATH.mkdir(parents=True, exist_ok=True)
TRAINING_VIDEOS_PATH.mkdir(parents=True, exist_ok=True)
MODEL_PATH.mkdir(parents=True, exist_ok=True)
OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
# Image normalization settings
NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower()
if NORMALIZE_IMAGES_TO not in ['png', 'jpg']:
raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'")
JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97'))
MODEL_TYPES = {
"HunyuanVideo (LoRA)": "hunyuan_video",
"LTX-Video (LoRA)": "ltx_video"
}
# it is best to use resolutions that are powers of 8
# The resolution should be divisible by 32
# so we cannot use 1080, 540 etc as they are not divisible by 32
TRAINING_WIDTH = 768 # 32 * 24
TRAINING_HEIGHT = 512 # 32 * 16
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
# 1056 = 32 * 33 (divided by 2: 544 = 17 * 32)
# 1024 = 32 * 32 (divided by 2: 512 = 16 * 32)
# it is important that the resolution buckets properly cover the training dataset,
# or else that we exclude from the dataset videos that are out of this range
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here
TRAINING_BUCKETS = [
(1, TRAINING_HEIGHT, TRAINING_WIDTH), # 1
(8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 8 + 1
(8 * 2 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 16 + 1
(8 * 4 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 32 + 1
(8 * 6 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 48 + 1
(8 * 8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 64 + 1
(8 * 10 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 80 + 1
(8 * 12 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 96 + 1
(8 * 14 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 112 + 1
(8 * 16 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 128 + 1
(8 * 18 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 144 + 1
(8 * 20 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 160 + 1
(8 * 22 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 176 + 1
(8 * 24 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 192 + 1
(8 * 28 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 224 + 1
(8 * 32 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 256 + 1
]
@dataclass
class TrainingConfig:
"""Configuration class for finetrainers training"""
# Required arguments must come first
model_name: str
pretrained_model_name_or_path: str
data_root: str
output_dir: str
# Optional arguments follow
revision: Optional[str] = None
variant: Optional[str] = None
cache_dir: Optional[str] = None
# Dataset arguments
# note: video_column and caption_column serve a dual purpose,
# when using the CSV mode they have to be CSV column names,
# otherwise they have to be filename (relative to the data_root dir path)
video_column: str = "videos.txt"
caption_column: str = "prompts.txt"
id_token: Optional[str] = None
video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: TRAINING_BUCKETS)
video_reshape_mode: str = "center"
caption_dropout_p: float = 0.05
caption_dropout_technique: str = "empty"
precompute_conditions: bool = False
# Diffusion arguments
flow_resolution_shifting: bool = False
flow_weighting_scheme: str = "none"
flow_logit_mean: float = 0.0
flow_logit_std: float = 1.0
flow_mode_scale: float = 1.29
# Training arguments
training_type: str = "lora"
seed: int = 42
mixed_precision: str = "bf16"
batch_size: int = 1
train_epochs: int = 70
lora_rank: int = 128
lora_alpha: int = 128
target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"])
gradient_accumulation_steps: int = 1
gradient_checkpointing: bool = True
checkpointing_steps: int = 500
checkpointing_limit: Optional[int] = 2
resume_from_checkpoint: Optional[str] = None
enable_slicing: bool = True
enable_tiling: bool = True
# Optimizer arguments
optimizer: str = "adamw"
lr: float = 3e-5
scale_lr: bool = False
lr_scheduler: str = "constant_with_warmup"
lr_warmup_steps: int = 100
lr_num_cycles: int = 1
lr_power: float = 1.0
beta1: float = 0.9
beta2: float = 0.95
weight_decay: float = 1e-4
epsilon: float = 1e-8
max_grad_norm: float = 1.0
# Miscellaneous arguments
tracker_name: str = "finetrainers"
report_to: str = "wandb"
nccl_timeout: int = 1800
@classmethod
def hunyuan_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig':
"""Configuration for Hunyuan video-to-video LoRA training"""
return cls(
model_name="hunyuan_video",
pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo",
data_root=data_path,
output_dir=output_path,
batch_size=1,
train_epochs=70,
lr=2e-5,
gradient_checkpointing=True,
id_token="afkx",
gradient_accumulation_steps=1,
lora_rank=128,
lora_alpha=128,
video_resolution_buckets=TRAINING_BUCKETS,
caption_dropout_p=0.05,
flow_weighting_scheme="none" # Hunyuan specific
)
@classmethod
def ltx_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig':
"""Configuration for LTX-Video LoRA training"""
return cls(
model_name="ltx_video",
pretrained_model_name_or_path="Lightricks/LTX-Video",
data_root=data_path,
output_dir=output_path,
batch_size=1,
train_epochs=70,
lr=3e-5,
gradient_checkpointing=True,
id_token="BW_STYLE",
gradient_accumulation_steps=4,
lora_rank=128,
lora_alpha=128,
video_resolution_buckets=TRAINING_BUCKETS,
caption_dropout_p=0.05,
flow_weighting_scheme="logit_normal" # LTX specific
)
def to_args_list(self) -> List[str]:
"""Convert config to command line arguments list"""
args = []
# Model arguments
# Add model_name (required argument)
args.extend(["--model_name", self.model_name])
args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path])
if self.revision:
args.extend(["--revision", self.revision])
if self.variant:
args.extend(["--variant", self.variant])
if self.cache_dir:
args.extend(["--cache_dir", self.cache_dir])
# Dataset arguments
args.extend(["--data_root", self.data_root])
args.extend(["--video_column", self.video_column])
args.extend(["--caption_column", self.caption_column])
if self.id_token:
args.extend(["--id_token", self.id_token])
# Add video resolution buckets
if self.video_resolution_buckets:
bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets]
args.extend(["--video_resolution_buckets"] + bucket_strs)
if self.video_reshape_mode:
args.extend(["--video_reshape_mode", self.video_reshape_mode])
args.extend(["--caption_dropout_p", str(self.caption_dropout_p)])
args.extend(["--caption_dropout_technique", self.caption_dropout_technique])
if self.precompute_conditions:
args.append("--precompute_conditions")
# Diffusion arguments
if self.flow_resolution_shifting:
args.append("--flow_resolution_shifting")
args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme])
args.extend(["--flow_logit_mean", str(self.flow_logit_mean)])
args.extend(["--flow_logit_std", str(self.flow_logit_std)])
args.extend(["--flow_mode_scale", str(self.flow_mode_scale)])
# Training arguments
args.extend(["--training_type", self.training_type])
args.extend(["--seed", str(self.seed)])
# we don't use this, because mixed precision is handled by accelerate launch, not by the training script itself.
#args.extend(["--mixed_precision", self.mixed_precision])
args.extend(["--batch_size", str(self.batch_size)])
args.extend(["--train_epochs", str(self.train_epochs)])
args.extend(["--rank", str(self.lora_rank)])
args.extend(["--lora_alpha", str(self.lora_alpha)])
args.extend(["--target_modules"] + self.target_modules)
args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)])
if self.gradient_checkpointing:
args.append("--gradient_checkpointing")
args.extend(["--checkpointing_steps", str(self.checkpointing_steps)])
if self.checkpointing_limit:
args.extend(["--checkpointing_limit", str(self.checkpointing_limit)])
if self.resume_from_checkpoint:
args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint])
if self.enable_slicing:
args.append("--enable_slicing")
if self.enable_tiling:
args.append("--enable_tiling")
# Optimizer arguments
args.extend(["--optimizer", self.optimizer])
args.extend(["--lr", str(self.lr)])
if self.scale_lr:
args.append("--scale_lr")
args.extend(["--lr_scheduler", self.lr_scheduler])
args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)])
args.extend(["--lr_num_cycles", str(self.lr_num_cycles)])
args.extend(["--lr_power", str(self.lr_power)])
args.extend(["--beta1", str(self.beta1)])
args.extend(["--beta2", str(self.beta2)])
args.extend(["--weight_decay", str(self.weight_decay)])
args.extend(["--epsilon", str(self.epsilon)])
args.extend(["--max_grad_norm", str(self.max_grad_norm)])
# Miscellaneous arguments
args.extend(["--tracker_name", self.tracker_name])
args.extend(["--output_dir", self.output_dir])
args.extend(["--report_to", self.report_to])
args.extend(["--nccl_timeout", str(self.nccl_timeout)])
# normally this is disabled by default, but there was a bug in finetrainers
# so I had to fix it in trainer.py to make sure we check for push_to-hub
#args.append("--push_to_hub")
#args.extend(["--hub_token", str(False)])
#args.extend(["--hub_model_id", str(False)])
# If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like
# "In this video, ...", "This video features ...", etc.
# To remove a simple subset of these phrases, you can specify
# --remove_common_llm_caption_prefixes when starting training.
args.append("--remove_common_llm_caption_prefixes")
return args |