File size: 11,953 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from typing import Dict, List, Optional, Union

import torch
import torch.nn as nn
from accelerate.logging import get_logger
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
from PIL import Image
from transformers import T5EncoderModel, T5Tokenizer


logger = get_logger("finetrainers")  # pylint: disable=invalid-name


def load_condition_models(
    model_id: str = "Lightricks/LTX-Video",
    text_encoder_dtype: torch.dtype = torch.bfloat16,
    revision: Optional[str] = None,
    cache_dir: Optional[str] = None,
    **kwargs,
) -> Dict[str, nn.Module]:
    tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir)
    text_encoder = T5EncoderModel.from_pretrained(
        model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir
    )
    return {"tokenizer": tokenizer, "text_encoder": text_encoder}


def load_latent_models(
    model_id: str = "Lightricks/LTX-Video",
    vae_dtype: torch.dtype = torch.bfloat16,
    revision: Optional[str] = None,
    cache_dir: Optional[str] = None,
    **kwargs,
) -> Dict[str, nn.Module]:
    vae = AutoencoderKLLTXVideo.from_pretrained(
        model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir
    )
    return {"vae": vae}


def load_diffusion_models(
    model_id: str = "Lightricks/LTX-Video",
    transformer_dtype: torch.dtype = torch.bfloat16,
    revision: Optional[str] = None,
    cache_dir: Optional[str] = None,
    **kwargs,
) -> Dict[str, nn.Module]:
    transformer = LTXVideoTransformer3DModel.from_pretrained(
        model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir
    )
    scheduler = FlowMatchEulerDiscreteScheduler()
    return {"transformer": transformer, "scheduler": scheduler}


def initialize_pipeline(
    model_id: str = "Lightricks/LTX-Video",
    text_encoder_dtype: torch.dtype = torch.bfloat16,
    transformer_dtype: torch.dtype = torch.bfloat16,
    vae_dtype: torch.dtype = torch.bfloat16,
    tokenizer: Optional[T5Tokenizer] = None,
    text_encoder: Optional[T5EncoderModel] = None,
    transformer: Optional[LTXVideoTransformer3DModel] = None,
    vae: Optional[AutoencoderKLLTXVideo] = None,
    scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
    device: Optional[torch.device] = None,
    revision: Optional[str] = None,
    cache_dir: Optional[str] = None,
    enable_slicing: bool = False,
    enable_tiling: bool = False,
    enable_model_cpu_offload: bool = False,
    is_training: bool = False,
    **kwargs,
) -> LTXPipeline:
    component_name_pairs = [
        ("tokenizer", tokenizer),
        ("text_encoder", text_encoder),
        ("transformer", transformer),
        ("vae", vae),
        ("scheduler", scheduler),
    ]
    components = {}
    for name, component in component_name_pairs:
        if component is not None:
            components[name] = component

    pipe = LTXPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir)
    pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype)
    pipe.vae = pipe.vae.to(dtype=vae_dtype)
    # The transformer should already be in the correct dtype when training, so we don't need to cast it here.
    # If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during
    # DDP optimizer step.
    if not is_training:
        pipe.transformer = pipe.transformer.to(dtype=transformer_dtype)

    if enable_slicing:
        pipe.vae.enable_slicing()
    if enable_tiling:
        pipe.vae.enable_tiling()

    if enable_model_cpu_offload:
        pipe.enable_model_cpu_offload(device=device)
    else:
        pipe.to(device=device)

    return pipe


def prepare_conditions(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    max_sequence_length: int = 128,
    **kwargs,
) -> torch.Tensor:
    device = device or text_encoder.device
    dtype = dtype or text_encoder.dtype

    if isinstance(prompt, str):
        prompt = [prompt]

    return _encode_prompt_t5(tokenizer, text_encoder, prompt, device, dtype, max_sequence_length)


def prepare_latents(
    vae: AutoencoderKLLTXVideo,
    image_or_video: torch.Tensor,
    patch_size: int = 1,
    patch_size_t: int = 1,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    generator: Optional[torch.Generator] = None,
    precompute: bool = False,
) -> torch.Tensor:
    device = device or vae.device

    if image_or_video.ndim == 4:
        image_or_video = image_or_video.unsqueeze(2)
    assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor"

    image_or_video = image_or_video.to(device=device, dtype=vae.dtype)
    image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous()  # [B, C, F, H, W] -> [B, F, C, H, W]
    if not precompute:
        latents = vae.encode(image_or_video).latent_dist.sample(generator=generator)
        latents = latents.to(dtype=dtype)
        _, _, num_frames, height, width = latents.shape
        latents = _normalize_latents(latents, vae.latents_mean, vae.latents_std)
        latents = _pack_latents(latents, patch_size, patch_size_t)
        return {"latents": latents, "num_frames": num_frames, "height": height, "width": width}
    else:
        if vae.use_slicing and image_or_video.shape[0] > 1:
            encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = vae._encode(image_or_video)
        _, _, num_frames, height, width = h.shape

        # TODO(aryan): This is very stupid that we might possibly be storing the latents_mean and latents_std in every file
        # if precomputation is enabled. We should probably have a single file where re-usable properties like this are stored
        # so as to reduce the disk memory requirements of the precomputed files.
        return {
            "latents": h,
            "num_frames": num_frames,
            "height": height,
            "width": width,
            "latents_mean": vae.latents_mean,
            "latents_std": vae.latents_std,
        }


def post_latent_preparation(
    latents: torch.Tensor,
    latents_mean: torch.Tensor,
    latents_std: torch.Tensor,
    num_frames: int,
    height: int,
    width: int,
    patch_size: int = 1,
    patch_size_t: int = 1,
    **kwargs,
) -> torch.Tensor:
    latents = _normalize_latents(latents, latents_mean, latents_std)
    latents = _pack_latents(latents, patch_size, patch_size_t)
    return {"latents": latents, "num_frames": num_frames, "height": height, "width": width}


def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]:
    return {
        "prompts": [x["prompt"] for x in batch[0]],
        "videos": torch.stack([x["video"] for x in batch[0]]),
    }


def forward_pass(
    transformer: LTXVideoTransformer3DModel,
    prompt_embeds: torch.Tensor,
    prompt_attention_mask: torch.Tensor,
    latents: torch.Tensor,
    noisy_latents: torch.Tensor,
    timesteps: torch.LongTensor,
    num_frames: int,
    height: int,
    width: int,
    **kwargs,
) -> torch.Tensor:
    # TODO(aryan): make configurable
    frame_rate = 25
    latent_frame_rate = frame_rate / 8
    spatial_compression_ratio = 32
    rope_interpolation_scale = [1 / latent_frame_rate, spatial_compression_ratio, spatial_compression_ratio]

    denoised_latents = transformer(
        hidden_states=noisy_latents,
        encoder_hidden_states=prompt_embeds,
        timestep=timesteps,
        encoder_attention_mask=prompt_attention_mask,
        num_frames=num_frames,
        height=height,
        width=width,
        rope_interpolation_scale=rope_interpolation_scale,
        return_dict=False,
    )[0]

    return {"latents": denoised_latents}


def validation(
    pipeline: LTXPipeline,
    prompt: str,
    image: Optional[Image.Image] = None,
    video: Optional[List[Image.Image]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_frames: Optional[int] = None,
    frame_rate: int = 24,
    num_videos_per_prompt: int = 1,
    generator: Optional[torch.Generator] = None,
    **kwargs,
):
    generation_kwargs = {
        "prompt": prompt,
        "height": height,
        "width": width,
        "num_frames": num_frames,
        "frame_rate": frame_rate,
        "num_videos_per_prompt": num_videos_per_prompt,
        "generator": generator,
        "return_dict": True,
        "output_type": "pil",
    }
    generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
    video = pipeline(**generation_kwargs).frames[0]
    return [("video", video)]


def _encode_prompt_t5(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: List[str],
    device: torch.device,
    dtype: torch.dtype,
    max_sequence_length,
) -> torch.Tensor:
    batch_size = len(prompt)

    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=max_sequence_length,
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    prompt_attention_mask = text_inputs.attention_mask
    prompt_attention_mask = prompt_attention_mask.bool().to(device)

    prompt_embeds = text_encoder(text_input_ids.to(device))[0]
    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
    prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)

    return {"prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask}


def _normalize_latents(
    latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
) -> torch.Tensor:
    # Normalize latents across the channel dimension [B, C, F, H, W]
    latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
    latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
    latents = (latents - latents_mean) * scaling_factor / latents_std
    return latents


def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
    # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
    # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
    # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
    # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
    batch_size, num_channels, num_frames, height, width = latents.shape
    post_patch_num_frames = num_frames // patch_size_t
    post_patch_height = height // patch_size
    post_patch_width = width // patch_size
    latents = latents.reshape(
        batch_size,
        -1,
        post_patch_num_frames,
        patch_size_t,
        post_patch_height,
        patch_size,
        post_patch_width,
        patch_size,
    )
    latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
    return latents


LTX_VIDEO_T2V_LORA_CONFIG = {
    "pipeline_cls": LTXPipeline,
    "load_condition_models": load_condition_models,
    "load_latent_models": load_latent_models,
    "load_diffusion_models": load_diffusion_models,
    "initialize_pipeline": initialize_pipeline,
    "prepare_conditions": prepare_conditions,
    "prepare_latents": prepare_latents,
    "post_latent_preparation": post_latent_preparation,
    "collate_fn": collate_fn_t2v,
    "forward_pass": forward_pass,
    "validation": validation,
}