Spaces:
Runtime error
Runtime error
File size: 16,925 Bytes
91fb4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import argparse
def _get_model_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
def _get_dataset_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--data_root",
type=str,
default=None,
help=("A folder containing the training data."),
)
parser.add_argument(
"--dataset_file",
type=str,
default=None,
help=("Path to a CSV file if loading prompts/video paths using this format."),
)
parser.add_argument(
"--video_column",
type=str,
default="video",
help="The column of the dataset containing videos. Or, the name of the file in `--data_root` folder containing the line-separated path to video data.",
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--data_root` folder containing the line-separated instance prompts.",
)
parser.add_argument(
"--id_token",
type=str,
default=None,
help="Identifier token appended to the start of each prompt if provided.",
)
parser.add_argument(
"--height_buckets",
nargs="+",
type=int,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--width_buckets",
nargs="+",
type=int,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--frame_buckets",
nargs="+",
type=int,
default=[49],
help="CogVideoX1.5 need to guarantee that ((num_frames - 1) // self.vae_scale_factor_temporal + 1) % patch_size_t == 0, such as 53"
)
parser.add_argument(
"--load_tensors",
action="store_true",
help="Whether to use a pre-encoded tensor dataset of latents and prompt embeddings instead of videos and text prompts. The expected format is that saved by running the `prepare_dataset.py` script.",
)
parser.add_argument(
"--random_flip",
type=float,
default=None,
help="If random horizontal flip augmentation is to be used, this should be the flip probability.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Whether or not to use the pinned memory setting in pytorch dataloader.",
)
def _get_validation_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
)
parser.add_argument(
"--validation_images",
type=str,
default=None,
help="One or more image path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
)
parser.add_argument(
"--validation_prompt_separator",
type=str,
default=":::",
help="String that separates multiple validation prompts",
)
parser.add_argument(
"--num_validation_videos",
type=int,
default=1,
help="Number of videos that should be generated during validation per `validation_prompt`.",
)
parser.add_argument(
"--validation_epochs",
type=int,
default=None,
help="Run validation every X training epochs. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=None,
help="Run validation every X training steps. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=6,
help="The guidance scale to use while sampling validation videos.",
)
parser.add_argument(
"--use_dynamic_cfg",
action="store_true",
default=False,
help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.",
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
default=False,
help="Whether or not to enable model-wise CPU offloading when performing validation/testing to save memory.",
)
def _get_training_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--rank", type=int, default=64, help="The rank for LoRA matrices.")
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help="The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.",
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.and an Nvidia Ampere GPU. "
"Default to the value of accelerate config of the current system or the flag passed with the `accelerate.launch` command. Use this "
"argument to override the accelerate config."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="cogvideox-sft",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--height",
type=int,
default=480,
help="All input videos are resized to this height.",
)
parser.add_argument(
"--width",
type=int,
default=720,
help="All input videos are resized to this width.",
)
parser.add_argument(
"--video_reshape_mode",
type=str,
default=None,
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
)
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
parser.add_argument(
"--max_num_frames",
type=int,
default=49,
help="All input videos will be truncated to these many frames.",
)
parser.add_argument(
"--skip_frames_start",
type=int,
default=0,
help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.",
)
parser.add_argument(
"--skip_frames_end",
type=int,
default=0,
help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.",
)
parser.add_argument(
"--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument(
"--lr_power",
type=float,
default=1.0,
help="Power factor of the polynomial scheduler.",
)
parser.add_argument(
"--enable_slicing",
action="store_true",
default=False,
help="Whether or not to use VAE slicing for saving memory.",
)
parser.add_argument(
"--enable_tiling",
action="store_true",
default=False,
help="Whether or not to use VAE tiling for saving memory.",
)
parser.add_argument(
"--noised_image_dropout",
type=float,
default=0.05,
help="Image condition dropout probability when finetuning image-to-video.",
)
parser.add_argument(
"--ignore_learned_positional_embeddings",
action="store_true",
default=False,
help=(
"Whether to ignore the learned positional embeddings when training CogVideoX Image-to-Video. This setting "
"should be used when performing multi-resolution training, because CogVideoX-I2V does not support it "
"otherwise. Please read the comments in https://github.com/a-r-r-o-w/cogvideox-factory/issues/26 to understand why."
),
)
def _get_optimizer_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--optimizer",
type=lambda s: s.lower(),
default="adam",
choices=["adam", "adamw", "prodigy", "came"],
help=("The optimizer type to use."),
)
parser.add_argument(
"--use_8bit",
action="store_true",
help="Whether or not to use 8-bit optimizers from `bitsandbytes` or `bitsandbytes`.",
)
parser.add_argument(
"--use_4bit",
action="store_true",
help="Whether or not to use 4-bit optimizers from `torchao`.",
)
parser.add_argument(
"--use_torchao", action="store_true", help="Whether or not to use the `torchao` backend for optimizers."
)
parser.add_argument(
"--beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta2",
type=float,
default=0.95,
help="The beta2 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta3",
type=float,
default=None,
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
)
parser.add_argument(
"--prodigy_decouple",
action="store_true",
help="Use AdamW style decoupled weight decay.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=1e-04,
help="Weight decay to use for optimizer.",
)
parser.add_argument(
"--epsilon",
type=float,
default=1e-8,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--prodigy_use_bias_correction",
action="store_true",
help="Turn on Adam's bias correction.",
)
parser.add_argument(
"--prodigy_safeguard_warmup",
action="store_true",
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.",
)
parser.add_argument(
"--use_cpu_offload_optimizer",
action="store_true",
help="Whether or not to use the CPUOffloadOptimizer from TorchAO to perform optimization step and maintain parameters on the CPU.",
)
parser.add_argument(
"--offload_gradients",
action="store_true",
help="Whether or not to offload the gradients to CPU when using the CPUOffloadOptimizer from TorchAO.",
)
def _get_configuration_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help="Directory where logs are stored.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--nccl_timeout",
type=int,
default=600,
help="Maximum timeout duration before which allgather, or related, operations fail in multi-GPU/multi-node training settings.",
)
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
def get_args():
parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.")
_get_model_args(parser)
_get_dataset_args(parser)
_get_training_args(parser)
_get_validation_args(parser)
_get_optimizer_args(parser)
_get_configuration_args(parser)
return parser.parse_args()
|