Spaces:
Runtime error
Runtime error
File size: 41,964 Bytes
91fb4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import logging
import math
import os
import random
import shutil
from datetime import timedelta
from pathlib import Path
from typing import Any, Dict
import diffusers
import torch
import transformers
import wandb
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import (
DistributedDataParallelKwargs,
InitProcessGroupKwargs,
ProjectConfiguration,
set_seed,
)
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params
from diffusers.utils import convert_unet_state_dict_to_peft, export_to_video, load_image
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import AutoTokenizer, T5EncoderModel
from args import get_args # isort:skip
from dataset import BucketSampler, VideoDatasetWithResizing, VideoDatasetWithResizeAndRectangleCrop # isort:skip
from text_encoder import compute_prompt_embeddings # isort:skip
from utils import (
get_gradient_norm,
get_optimizer,
prepare_rotary_positional_embeddings,
print_memory,
reset_memory,
unwrap_model,
)
logger = get_logger(__name__)
def save_model_card(
repo_id: str,
videos=None,
base_model: str = None,
validation_prompt=None,
repo_folder=None,
fps=8,
):
widget_dict = []
if videos is not None:
for i, video in enumerate(videos):
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps))
widget_dict.append(
{
"text": validation_prompt if validation_prompt else " ",
"output": {"url": f"video_{i}.mp4"},
}
)
model_description = f"""
# CogVideoX LoRA Finetune
<Gallery />
## Model description
This is a lora finetune of the CogVideoX model `{base_model}`.
The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).
## Download model
[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab.
## Usage
Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed.
```py
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora")
# The LoRA adapter weights are determined by what was used for training.
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
# It can be made lower or higher from what was used in training to decrease or amplify the effect
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
image = load_image("/path/to/image.png")
video = pipe(image=image, prompt="{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b-I2V/blob/main/LICENSE).
"""
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="other",
base_model=base_model,
prompt=validation_prompt,
model_description=model_description,
widget=widget_dict,
)
tags = [
"text-to-video",
"image-to-video",
"diffusers-training",
"diffusers",
"lora",
"cogvideox",
"cogvideox-diffusers",
"template:sd-lora",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def log_validation(
accelerator: Accelerator,
pipe: CogVideoXImageToVideoPipeline,
args: Dict[str, Any],
pipeline_args: Dict[str, Any],
is_final_validation: bool = False,
):
logger.info(
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
)
pipe = pipe.to(accelerator.device)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
videos = []
for _ in range(args.num_validation_videos):
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
videos.append(video)
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "wandb":
video_filenames = []
for i, video in enumerate(videos):
prompt = (
pipeline_args["prompt"][:25]
.replace(" ", "_")
.replace(" ", "_")
.replace("'", "_")
.replace('"', "_")
.replace("/", "_")
)
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4")
export_to_video(video, filename, fps=8)
video_filenames.append(filename)
tracker.log(
{
phase_name: [
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}")
for i, filename in enumerate(video_filenames)
]
}
)
return videos
def run_validation(
args: Dict[str, Any],
accelerator: Accelerator,
transformer,
scheduler,
model_config: Dict[str, Any],
weight_dtype: torch.dtype,
) -> None:
accelerator.print("===== Memory before validation =====")
print_memory(accelerator.device)
torch.cuda.synchronize(accelerator.device)
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
args.pretrained_model_name_or_path,
transformer=unwrap_model(accelerator, transformer),
scheduler=scheduler,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
if args.enable_slicing:
pipe.vae.enable_slicing()
if args.enable_tiling:
pipe.vae.enable_tiling()
if args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
validation_images = args.validation_images.split(args.validation_prompt_separator)
for validation_image, validation_prompt in zip(validation_images, validation_prompts):
pipeline_args = {
"image": load_image(validation_image),
"prompt": validation_prompt,
"guidance_scale": args.guidance_scale,
"use_dynamic_cfg": args.use_dynamic_cfg,
"height": args.height,
"width": args.width,
"max_sequence_length": model_config.max_text_seq_length,
}
log_validation(
pipe=pipe,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args,
)
accelerator.print("===== Memory after validation =====")
print_memory(accelerator.device)
reset_memory(accelerator.device)
del pipe
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize(accelerator.device)
class CollateFunction:
def __init__(self, weight_dtype: torch.dtype, load_tensors: bool) -> None:
self.weight_dtype = weight_dtype
self.load_tensors = load_tensors
def __call__(self, data: Dict[str, Any]) -> Dict[str, torch.Tensor]:
prompts = [x["prompt"] for x in data[0]]
if self.load_tensors:
prompts = torch.stack(prompts).to(dtype=self.weight_dtype, non_blocking=True)
images = [x["image"] for x in data[0]]
images = torch.stack(images).to(dtype=self.weight_dtype, non_blocking=True)
videos = [x["video"] for x in data[0]]
videos = torch.stack(videos).to(dtype=self.weight_dtype, non_blocking=True)
return {
"images": images,
"videos": videos,
"prompts": prompts,
}
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
init_process_group_kwargs = InitProcessGroupKwargs(backend="nccl", timeout=timedelta(seconds=args.nccl_timeout))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name,
exist_ok=True,
).repo_id
# Prepare models and scheduler
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
text_encoder = T5EncoderModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
# CogVideoX-2b weights are stored in float16
# CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16
load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16
transformer = CogVideoXTransformer3DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=load_dtype,
revision=args.revision,
variant=args.variant,
)
# These changes will also be required when trying to run inference with the trained lora
if args.ignore_learned_positional_embeddings:
del transformer.patch_embed.pos_embedding
transformer.patch_embed.use_learned_positional_embeddings = False
transformer.config.use_learned_positional_embeddings = False
vae = AutoencoderKLCogVideoX.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
if args.enable_slicing:
vae.enable_slicing()
if args.enable_tiling:
vae.enable_tiling()
# We only train the additional adapter LoRA layers
text_encoder.requires_grad_(False)
transformer.requires_grad_(False)
vae.requires_grad_(False)
VAE_SCALING_FACTOR = vae.config.scaling_factor
VAE_SCALE_FACTOR_SPATIAL = 2 ** (len(vae.config.block_out_channels) - 1)
RoPE_BASE_HEIGHT = transformer.config.sample_height * VAE_SCALE_FACTOR_SPATIAL
RoPE_BASE_WIDTH = transformer.config.sample_width * VAE_SCALE_FACTOR_SPATIAL
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.state.deepspeed_plugin:
# DeepSpeed is handling precision, use what's in the DeepSpeed config
if (
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]
):
weight_dtype = torch.float16
if (
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]
):
weight_dtype = torch.bfloat16
else:
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
text_encoder.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# now we will add new LoRA weights to the attention layers
transformer_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.lora_alpha,
init_lora_weights=True,
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
transformer.add_adapter(transformer_lora_config)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
for model in models:
if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))):
model = unwrap_model(accelerator, model)
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
else:
raise ValueError(f"Unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
CogVideoXImageToVideoPipeline.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
)
def load_model_hook(models, input_dir):
transformer_ = None
# This is a bit of a hack but I don't know any other solution.
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
while len(models) > 0:
model = models.pop()
if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))):
transformer_ = unwrap_model(accelerator, model)
else:
raise ValueError(f"Unexpected save model: {unwrap_model(accelerator, model).__class__}")
else:
transformer_ = CogVideoXTransformer3DModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="transformer"
)
transformer_.add_adapter(transformer_lora_config)
lora_state_dict = CogVideoXImageToVideoPipeline.lora_state_dict(input_dir)
transformer_state_dict = {
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.")
}
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
# only upcast trainable parameters (LoRA) into fp32
cast_training_params([transformer_])
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32 and torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
# only upcast trainable parameters (LoRA) into fp32
cast_training_params([transformer], dtype=torch.float32)
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
# Optimization parameters
transformer_parameters_with_lr = {
"params": transformer_lora_parameters,
"lr": args.learning_rate,
}
params_to_optimize = [transformer_parameters_with_lr]
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"])
use_deepspeed_optimizer = (
accelerator.state.deepspeed_plugin is not None
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config
)
use_deepspeed_scheduler = (
accelerator.state.deepspeed_plugin is not None
and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config
)
optimizer = get_optimizer(
params_to_optimize=params_to_optimize,
optimizer_name=args.optimizer,
learning_rate=args.learning_rate,
beta1=args.beta1,
beta2=args.beta2,
beta3=args.beta3,
epsilon=args.epsilon,
weight_decay=args.weight_decay,
prodigy_decouple=args.prodigy_decouple,
prodigy_use_bias_correction=args.prodigy_use_bias_correction,
prodigy_safeguard_warmup=args.prodigy_safeguard_warmup,
use_8bit=args.use_8bit,
use_4bit=args.use_4bit,
use_torchao=args.use_torchao,
use_deepspeed=use_deepspeed_optimizer,
use_cpu_offload_optimizer=args.use_cpu_offload_optimizer,
offload_gradients=args.offload_gradients,
)
# Dataset and DataLoader
dataset_init_kwargs = {
"data_root": args.data_root,
"dataset_file": args.dataset_file,
"caption_column": args.caption_column,
"video_column": args.video_column,
"max_num_frames": args.max_num_frames,
"id_token": args.id_token,
"height_buckets": args.height_buckets,
"width_buckets": args.width_buckets,
"frame_buckets": args.frame_buckets,
"load_tensors": args.load_tensors,
"random_flip": args.random_flip,
"image_to_video": True,
}
if args.video_reshape_mode is None:
train_dataset = VideoDatasetWithResizing(**dataset_init_kwargs)
else:
train_dataset = VideoDatasetWithResizeAndRectangleCrop(
video_reshape_mode=args.video_reshape_mode, **dataset_init_kwargs
)
collate_fn = CollateFunction(weight_dtype, args.load_tensors)
train_dataloader = DataLoader(
train_dataset,
batch_size=1,
sampler=BucketSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True),
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
pin_memory=args.pin_memory,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if args.use_cpu_offload_optimizer:
lr_scheduler = None
accelerator.print(
"CPU Offload Optimizer cannot be used with DeepSpeed or builtin PyTorch LR Schedulers. If "
"you are training with those settings, they will be ignored."
)
else:
if use_deepspeed_scheduler:
from accelerate.utils import DummyScheduler
lr_scheduler = DummyScheduler(
name=args.lr_scheduler,
optimizer=optimizer,
total_num_steps=args.max_train_steps * accelerator.num_processes,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
)
else:
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process:
tracker_name = args.tracker_name or "cogvideox-lora"
accelerator.init_trackers(tracker_name, config=vars(args))
accelerator.print("===== Memory before training =====")
reset_memory(accelerator.device)
print_memory(accelerator.device)
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("***** Running training *****")
accelerator.print(f" Num trainable parameters = {num_trainable_parameters}")
accelerator.print(f" Num examples = {len(train_dataset)}")
accelerator.print(f" Num batches each epoch = {len(train_dataloader)}")
accelerator.print(f" Num epochs = {args.num_train_epochs}")
accelerator.print(f" Instantaneous batch size per device = {args.train_batch_size}")
accelerator.print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
accelerator.print(f" Gradient accumulation steps = {args.gradient_accumulation_steps}")
accelerator.print(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if not args.resume_from_checkpoint:
initial_global_step = 0
else:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
# For DeepSpeed training
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config
if args.load_tensors:
del vae, text_encoder
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize(accelerator.device)
alphas_cumprod = scheduler.alphas_cumprod.to(accelerator.device, dtype=torch.float32)
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
models_to_accumulate = [transformer]
logs = {}
with accelerator.accumulate(models_to_accumulate):
images = batch["images"].to(accelerator.device, non_blocking=True)
videos = batch["videos"].to(accelerator.device, non_blocking=True)
prompts = batch["prompts"]
# Encode videos
if not args.load_tensors:
images = images.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
image_noise_sigma = torch.normal(
mean=-3.0, std=0.5, size=(images.size(0),), device=accelerator.device, dtype=weight_dtype
)
image_noise_sigma = torch.exp(image_noise_sigma)
noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
image_latent_dist = vae.encode(noisy_images).latent_dist
videos = videos.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(videos).latent_dist
else:
image_latent_dist = DiagonalGaussianDistribution(images)
latent_dist = DiagonalGaussianDistribution(videos)
image_latents = image_latent_dist.sample() * VAE_SCALING_FACTOR
image_latents = image_latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
image_latents = image_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)
video_latents = latent_dist.sample() * VAE_SCALING_FACTOR
video_latents = video_latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
video_latents = video_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)
padding_shape = (video_latents.shape[0], video_latents.shape[1] - 1, *video_latents.shape[2:])
latent_padding = image_latents.new_zeros(padding_shape)
image_latents = torch.cat([image_latents, latent_padding], dim=1)
if random.random() < args.noised_image_dropout:
image_latents = torch.zeros_like(image_latents)
# Encode prompts
if not args.load_tensors:
prompt_embeds = compute_prompt_embeddings(
tokenizer,
text_encoder,
prompts,
model_config.max_text_seq_length,
accelerator.device,
weight_dtype,
requires_grad=False,
)
else:
prompt_embeds = prompts.to(dtype=weight_dtype)
# Sample noise that will be added to the latents
noise = torch.randn_like(video_latents)
batch_size, num_frames, num_channels, height, width = video_latents.shape
# Sample a random timestep for each image
timesteps = torch.randint(
0,
scheduler.config.num_train_timesteps,
(batch_size,),
dtype=torch.int64,
device=accelerator.device,
)
# Prepare rotary embeds
image_rotary_emb = (
prepare_rotary_positional_embeddings(
height=height * VAE_SCALE_FACTOR_SPATIAL,
width=width * VAE_SCALE_FACTOR_SPATIAL,
num_frames=num_frames,
vae_scale_factor_spatial=VAE_SCALE_FACTOR_SPATIAL,
patch_size=model_config.patch_size,
patch_size_t=model_config.patch_size_t if hasattr(model_config, "patch_size_t") else None,
attention_head_dim=model_config.attention_head_dim,
device=accelerator.device,
base_height=RoPE_BASE_HEIGHT,
base_width=RoPE_BASE_WIDTH,
)
if model_config.use_rotary_positional_embeddings
else None
)
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_video_latents = scheduler.add_noise(video_latents, noise, timesteps)
noisy_model_input = torch.cat([noisy_video_latents, image_latents], dim=2)
ofs_embed_dim = model_config.ofs_embed_dim if hasattr(model_config, "ofs_embed_dim") else None,
ofs_emb = None if ofs_embed_dim is None else noisy_model_input.new_full((1,), fill_value=2.0)
# Predict the noise residual
model_output = transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timesteps,
ofs=ofs_emb,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
model_pred = scheduler.get_velocity(model_output, noisy_video_latents, timesteps)
weights = 1 / (1 - alphas_cumprod[timesteps])
while len(weights.shape) < len(model_pred.shape):
weights = weights.unsqueeze(-1)
target = video_latents
loss = torch.mean(
(weights * (model_pred - target) ** 2).reshape(batch_size, -1),
dim=1,
)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients and accelerator.distributed_type != DistributedType.DEEPSPEED:
gradient_norm_before_clip = get_gradient_norm(transformer.parameters())
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
gradient_norm_after_clip = get_gradient_norm(transformer.parameters())
logs.update(
{
"gradient_norm_before_clip": gradient_norm_before_clip,
"gradient_norm_after_clip": gradient_norm_after_clip,
}
)
if accelerator.state.deepspeed_plugin is None:
optimizer.step()
optimizer.zero_grad()
if not args.use_cpu_offload_optimizer:
lr_scheduler.step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# Checkpointing
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
# Validation
should_run_validation = args.validation_prompt is not None and (
args.validation_steps is not None and global_step % args.validation_steps == 0
)
if should_run_validation:
run_validation(args, accelerator, transformer, scheduler, model_config, weight_dtype)
last_lr = lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else args.learning_rate
logs.update(
{
"loss": loss.detach().item(),
"lr": last_lr,
}
)
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if accelerator.is_main_process:
should_run_validation = args.validation_prompt is not None and (
args.validation_epochs is not None and (epoch + 1) % args.validation_epochs == 0
)
if should_run_validation:
run_validation(args, accelerator, transformer, scheduler, model_config, weight_dtype)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
transformer = unwrap_model(accelerator, transformer)
dtype = (
torch.float16
if args.mixed_precision == "fp16"
else torch.bfloat16
if args.mixed_precision == "bf16"
else torch.float32
)
transformer = transformer.to(dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
CogVideoXImageToVideoPipeline.save_lora_weights(
save_directory=args.output_dir,
transformer_lora_layers=transformer_lora_layers,
)
# Cleanup trained models to save memory
if args.load_tensors:
del transformer
else:
del transformer, text_encoder, vae
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize(accelerator.device)
accelerator.print("===== Memory before testing =====")
print_memory(accelerator.device)
reset_memory(accelerator.device)
# Final test inference
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
args.pretrained_model_name_or_path,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)
if args.enable_slicing:
pipe.vae.enable_slicing()
if args.enable_tiling:
pipe.vae.enable_tiling()
if args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
# Load LoRA weights
lora_scaling = args.lora_alpha / args.rank
pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora")
pipe.set_adapters(["cogvideox-lora"], [lora_scaling])
# Run inference
validation_outputs = []
if args.validation_prompt and args.num_validation_videos > 0:
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
validation_images = args.validation_images.split(args.validation_prompt_separator)
for validation_image, validation_prompt in zip(validation_images, validation_prompts):
pipeline_args = {
"image": load_image(validation_image),
"prompt": validation_prompt,
"guidance_scale": args.guidance_scale,
"use_dynamic_cfg": args.use_dynamic_cfg,
"height": args.height,
"width": args.width,
}
video = log_validation(
accelerator=accelerator,
pipe=pipe,
args=args,
pipeline_args=pipeline_args,
is_final_validation=True,
)
validation_outputs.extend(video)
accelerator.print("===== Memory after testing =====")
print_memory(accelerator.device)
reset_memory(accelerator.device)
torch.cuda.synchronize(accelerator.device)
if args.push_to_hub:
save_model_card(
repo_id,
videos=validation_outputs,
base_model=args.pretrained_model_name_or_path,
validation_prompt=args.validation_prompt,
repo_folder=args.output_dir,
fps=args.fps,
)
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
args = get_args()
main(args)
|