File size: 41,964 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import logging
import math
import os
import random
import shutil
from datetime import timedelta
from pathlib import Path
from typing import Any, Dict

import diffusers
import torch
import transformers
import wandb
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import (
    DistributedDataParallelKwargs,
    InitProcessGroupKwargs,
    ProjectConfiguration,
    set_seed,
)
from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDPMScheduler,
    CogVideoXImageToVideoPipeline,
    CogVideoXTransformer3DModel,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params
from diffusers.utils import convert_unet_state_dict_to_peft, export_to_video, load_image
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import AutoTokenizer, T5EncoderModel


from args import get_args  # isort:skip
from dataset import BucketSampler, VideoDatasetWithResizing, VideoDatasetWithResizeAndRectangleCrop  # isort:skip
from text_encoder import compute_prompt_embeddings  # isort:skip
from utils import (
    get_gradient_norm,
    get_optimizer,
    prepare_rotary_positional_embeddings,
    print_memory,
    reset_memory,
    unwrap_model,
)


logger = get_logger(__name__)


def save_model_card(
    repo_id: str,
    videos=None,
    base_model: str = None,
    validation_prompt=None,
    repo_folder=None,
    fps=8,
):
    widget_dict = []
    if videos is not None:
        for i, video in enumerate(videos):
            export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps))
            widget_dict.append(
                {
                    "text": validation_prompt if validation_prompt else " ",
                    "output": {"url": f"video_{i}.mp4"},
                }
            )

    model_description = f"""
# CogVideoX LoRA Finetune

<Gallery />

## Model description

This is a lora finetune of the CogVideoX model `{base_model}`.

The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).

## Download model

[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab.

## Usage

Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed.

```py
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image

pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora")

# The LoRA adapter weights are determined by what was used for training.
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
# It can be made lower or higher from what was used in training to decrease or amplify the effect
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
pipe.set_adapters(["cogvideox-lora"], [32 / 64])

image = load_image("/path/to/image.png")
video = pipe(image=image, prompt="{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(video, "output.mp4", fps=8)
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.

## License

Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b-I2V/blob/main/LICENSE).
"""
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="other",
        base_model=base_model,
        prompt=validation_prompt,
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-video",
        "image-to-video",
        "diffusers-training",
        "diffusers",
        "lora",
        "cogvideox",
        "cogvideox-diffusers",
        "template:sd-lora",
    ]

    model_card = populate_model_card(model_card, tags=tags)
    model_card.save(os.path.join(repo_folder, "README.md"))


def log_validation(
    accelerator: Accelerator,
    pipe: CogVideoXImageToVideoPipeline,
    args: Dict[str, Any],
    pipeline_args: Dict[str, Any],
    is_final_validation: bool = False,
):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
    )

    pipe = pipe.to(accelerator.device)

    # run inference
    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None

    videos = []
    for _ in range(args.num_validation_videos):
        video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
        videos.append(video)

    for tracker in accelerator.trackers:
        phase_name = "test" if is_final_validation else "validation"
        if tracker.name == "wandb":
            video_filenames = []
            for i, video in enumerate(videos):
                prompt = (
                    pipeline_args["prompt"][:25]
                    .replace(" ", "_")
                    .replace(" ", "_")
                    .replace("'", "_")
                    .replace('"', "_")
                    .replace("/", "_")
                )
                filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4")
                export_to_video(video, filename, fps=8)
                video_filenames.append(filename)

            tracker.log(
                {
                    phase_name: [
                        wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}")
                        for i, filename in enumerate(video_filenames)
                    ]
                }
            )

    return videos


def run_validation(
    args: Dict[str, Any],
    accelerator: Accelerator,
    transformer,
    scheduler,
    model_config: Dict[str, Any],
    weight_dtype: torch.dtype,
) -> None:
    accelerator.print("===== Memory before validation =====")
    print_memory(accelerator.device)
    torch.cuda.synchronize(accelerator.device)

    pipe = CogVideoXImageToVideoPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        transformer=unwrap_model(accelerator, transformer),
        scheduler=scheduler,
        revision=args.revision,
        variant=args.variant,
        torch_dtype=weight_dtype,
    )

    if args.enable_slicing:
        pipe.vae.enable_slicing()
    if args.enable_tiling:
        pipe.vae.enable_tiling()
    if args.enable_model_cpu_offload:
        pipe.enable_model_cpu_offload()

    validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
    validation_images = args.validation_images.split(args.validation_prompt_separator)
    for validation_image, validation_prompt in zip(validation_images, validation_prompts):
        pipeline_args = {
            "image": load_image(validation_image),
            "prompt": validation_prompt,
            "guidance_scale": args.guidance_scale,
            "use_dynamic_cfg": args.use_dynamic_cfg,
            "height": args.height,
            "width": args.width,
            "max_sequence_length": model_config.max_text_seq_length,
        }

        log_validation(
            pipe=pipe,
            args=args,
            accelerator=accelerator,
            pipeline_args=pipeline_args,
        )

    accelerator.print("===== Memory after validation =====")
    print_memory(accelerator.device)
    reset_memory(accelerator.device)

    del pipe
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.synchronize(accelerator.device)


class CollateFunction:
    def __init__(self, weight_dtype: torch.dtype, load_tensors: bool) -> None:
        self.weight_dtype = weight_dtype
        self.load_tensors = load_tensors

    def __call__(self, data: Dict[str, Any]) -> Dict[str, torch.Tensor]:
        prompts = [x["prompt"] for x in data[0]]

        if self.load_tensors:
            prompts = torch.stack(prompts).to(dtype=self.weight_dtype, non_blocking=True)

        images = [x["image"] for x in data[0]]
        images = torch.stack(images).to(dtype=self.weight_dtype, non_blocking=True)

        videos = [x["video"] for x in data[0]]
        videos = torch.stack(videos).to(dtype=self.weight_dtype, non_blocking=True)

        return {
            "images": images,
            "videos": videos,
            "prompts": prompts,
        }


def main(args):
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
    ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    init_process_group_kwargs = InitProcessGroupKwargs(backend="nccl", timeout=timedelta(seconds=args.nccl_timeout))
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
    )

    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name,
                exist_ok=True,
            ).repo_id

    # Prepare models and scheduler
    tokenizer = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
    )

    text_encoder = T5EncoderModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )

    # CogVideoX-2b weights are stored in float16
    # CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16
    load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16
    transformer = CogVideoXTransformer3DModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="transformer",
        torch_dtype=load_dtype,
        revision=args.revision,
        variant=args.variant,
    )

    # These changes will also be required when trying to run inference with the trained lora
    if args.ignore_learned_positional_embeddings:
        del transformer.patch_embed.pos_embedding
        transformer.patch_embed.use_learned_positional_embeddings = False
        transformer.config.use_learned_positional_embeddings = False

    vae = AutoencoderKLCogVideoX.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
        variant=args.variant,
    )

    scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    if args.enable_slicing:
        vae.enable_slicing()
    if args.enable_tiling:
        vae.enable_tiling()

    # We only train the additional adapter LoRA layers
    text_encoder.requires_grad_(False)
    transformer.requires_grad_(False)
    vae.requires_grad_(False)

    VAE_SCALING_FACTOR = vae.config.scaling_factor
    VAE_SCALE_FACTOR_SPATIAL = 2 ** (len(vae.config.block_out_channels) - 1)
    RoPE_BASE_HEIGHT = transformer.config.sample_height * VAE_SCALE_FACTOR_SPATIAL
    RoPE_BASE_WIDTH = transformer.config.sample_width * VAE_SCALE_FACTOR_SPATIAL

    # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.state.deepspeed_plugin:
        # DeepSpeed is handling precision, use what's in the DeepSpeed config
        if (
            "fp16" in accelerator.state.deepspeed_plugin.deepspeed_config
            and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]
        ):
            weight_dtype = torch.float16
        if (
            "bf16" in accelerator.state.deepspeed_plugin.deepspeed_config
            and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]
        ):
            weight_dtype = torch.bfloat16
    else:
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16

    if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    text_encoder.to(accelerator.device, dtype=weight_dtype)
    transformer.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    if args.gradient_checkpointing:
        transformer.enable_gradient_checkpointing()

    # now we will add new LoRA weights to the attention layers
    transformer_lora_config = LoraConfig(
        r=args.rank,
        lora_alpha=args.lora_alpha,
        init_lora_weights=True,
        target_modules=["to_k", "to_q", "to_v", "to_out.0"],
    )
    transformer.add_adapter(transformer_lora_config)

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            transformer_lora_layers_to_save = None

            for model in models:
                if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))):
                    model = unwrap_model(accelerator, model)
                    transformer_lora_layers_to_save = get_peft_model_state_dict(model)
                else:
                    raise ValueError(f"Unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                if weights:
                    weights.pop()

            CogVideoXImageToVideoPipeline.save_lora_weights(
                output_dir,
                transformer_lora_layers=transformer_lora_layers_to_save,
            )

    def load_model_hook(models, input_dir):
        transformer_ = None

        # This is a bit of a hack but I don't know any other solution.
        if not accelerator.distributed_type == DistributedType.DEEPSPEED:
            while len(models) > 0:
                model = models.pop()

                if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))):
                    transformer_ = unwrap_model(accelerator, model)
                else:
                    raise ValueError(f"Unexpected save model: {unwrap_model(accelerator, model).__class__}")
        else:
            transformer_ = CogVideoXTransformer3DModel.from_pretrained(
                args.pretrained_model_name_or_path, subfolder="transformer"
            )
            transformer_.add_adapter(transformer_lora_config)

        lora_state_dict = CogVideoXImageToVideoPipeline.lora_state_dict(input_dir)

        transformer_state_dict = {
            f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.")
        }
        transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
        incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            # only upcast trainable parameters (LoRA) into fp32
            cast_training_params([transformer_])

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32 and torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params([transformer], dtype=torch.float32)

    transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))

    # Optimization parameters
    transformer_parameters_with_lr = {
        "params": transformer_lora_parameters,
        "lr": args.learning_rate,
    }
    params_to_optimize = [transformer_parameters_with_lr]
    num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"])

    use_deepspeed_optimizer = (
        accelerator.state.deepspeed_plugin is not None
        and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config
    )
    use_deepspeed_scheduler = (
        accelerator.state.deepspeed_plugin is not None
        and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config
    )

    optimizer = get_optimizer(
        params_to_optimize=params_to_optimize,
        optimizer_name=args.optimizer,
        learning_rate=args.learning_rate,
        beta1=args.beta1,
        beta2=args.beta2,
        beta3=args.beta3,
        epsilon=args.epsilon,
        weight_decay=args.weight_decay,
        prodigy_decouple=args.prodigy_decouple,
        prodigy_use_bias_correction=args.prodigy_use_bias_correction,
        prodigy_safeguard_warmup=args.prodigy_safeguard_warmup,
        use_8bit=args.use_8bit,
        use_4bit=args.use_4bit,
        use_torchao=args.use_torchao,
        use_deepspeed=use_deepspeed_optimizer,
        use_cpu_offload_optimizer=args.use_cpu_offload_optimizer,
        offload_gradients=args.offload_gradients,
    )

    # Dataset and DataLoader
    dataset_init_kwargs = {
        "data_root": args.data_root,
        "dataset_file": args.dataset_file,
        "caption_column": args.caption_column,
        "video_column": args.video_column,
        "max_num_frames": args.max_num_frames,
        "id_token": args.id_token,
        "height_buckets": args.height_buckets,
        "width_buckets": args.width_buckets,
        "frame_buckets": args.frame_buckets,
        "load_tensors": args.load_tensors,
        "random_flip": args.random_flip,
        "image_to_video": True,
    }
    if args.video_reshape_mode is None:
        train_dataset = VideoDatasetWithResizing(**dataset_init_kwargs)
    else:
        train_dataset = VideoDatasetWithResizeAndRectangleCrop(
            video_reshape_mode=args.video_reshape_mode, **dataset_init_kwargs
        )

    collate_fn = CollateFunction(weight_dtype, args.load_tensors)

    train_dataloader = DataLoader(
        train_dataset,
        batch_size=1,
        sampler=BucketSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True),
        collate_fn=collate_fn,
        num_workers=args.dataloader_num_workers,
        pin_memory=args.pin_memory,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    if args.use_cpu_offload_optimizer:
        lr_scheduler = None
        accelerator.print(
            "CPU Offload Optimizer cannot be used with DeepSpeed or builtin PyTorch LR Schedulers. If "
            "you are training with those settings, they will be ignored."
        )
    else:
        if use_deepspeed_scheduler:
            from accelerate.utils import DummyScheduler

            lr_scheduler = DummyScheduler(
                name=args.lr_scheduler,
                optimizer=optimizer,
                total_num_steps=args.max_train_steps * accelerator.num_processes,
                num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
            )
        else:
            lr_scheduler = get_scheduler(
                args.lr_scheduler,
                optimizer=optimizer,
                num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
                num_training_steps=args.max_train_steps * accelerator.num_processes,
                num_cycles=args.lr_num_cycles,
                power=args.lr_power,
            )

    # Prepare everything with our `accelerator`.
    transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        transformer, optimizer, train_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process:
        tracker_name = args.tracker_name or "cogvideox-lora"
        accelerator.init_trackers(tracker_name, config=vars(args))

        accelerator.print("===== Memory before training =====")
        reset_memory(accelerator.device)
        print_memory(accelerator.device)

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    accelerator.print("***** Running training *****")
    accelerator.print(f"  Num trainable parameters = {num_trainable_parameters}")
    accelerator.print(f"  Num examples = {len(train_dataset)}")
    accelerator.print(f"  Num batches each epoch = {len(train_dataloader)}")
    accelerator.print(f"  Num epochs = {args.num_train_epochs}")
    accelerator.print(f"  Instantaneous batch size per device = {args.train_batch_size}")
    accelerator.print(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    accelerator.print(f"  Gradient accumulation steps = {args.gradient_accumulation_steps}")
    accelerator.print(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if not args.resume_from_checkpoint:
        initial_global_step = 0
    else:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    # For DeepSpeed training
    model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config

    if args.load_tensors:
        del vae, text_encoder
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.synchronize(accelerator.device)

    alphas_cumprod = scheduler.alphas_cumprod.to(accelerator.device, dtype=torch.float32)

    for epoch in range(first_epoch, args.num_train_epochs):
        transformer.train()

        for step, batch in enumerate(train_dataloader):
            models_to_accumulate = [transformer]
            logs = {}

            with accelerator.accumulate(models_to_accumulate):
                images = batch["images"].to(accelerator.device, non_blocking=True)
                videos = batch["videos"].to(accelerator.device, non_blocking=True)
                prompts = batch["prompts"]

                # Encode videos
                if not args.load_tensors:
                    images = images.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W]
                    image_noise_sigma = torch.normal(
                        mean=-3.0, std=0.5, size=(images.size(0),), device=accelerator.device, dtype=weight_dtype
                    )
                    image_noise_sigma = torch.exp(image_noise_sigma)
                    noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
                    image_latent_dist = vae.encode(noisy_images).latent_dist

                    videos = videos.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W]
                    latent_dist = vae.encode(videos).latent_dist
                else:
                    image_latent_dist = DiagonalGaussianDistribution(images)
                    latent_dist = DiagonalGaussianDistribution(videos)

                image_latents = image_latent_dist.sample() * VAE_SCALING_FACTOR
                image_latents = image_latents.permute(0, 2, 1, 3, 4)  # [B, F, C, H, W]
                image_latents = image_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)

                video_latents = latent_dist.sample() * VAE_SCALING_FACTOR
                video_latents = video_latents.permute(0, 2, 1, 3, 4)  # [B, F, C, H, W]
                video_latents = video_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)

                padding_shape = (video_latents.shape[0], video_latents.shape[1] - 1, *video_latents.shape[2:])
                latent_padding = image_latents.new_zeros(padding_shape)
                image_latents = torch.cat([image_latents, latent_padding], dim=1)

                if random.random() < args.noised_image_dropout:
                    image_latents = torch.zeros_like(image_latents)

                # Encode prompts
                if not args.load_tensors:
                    prompt_embeds = compute_prompt_embeddings(
                        tokenizer,
                        text_encoder,
                        prompts,
                        model_config.max_text_seq_length,
                        accelerator.device,
                        weight_dtype,
                        requires_grad=False,
                    )
                else:
                    prompt_embeds = prompts.to(dtype=weight_dtype)

                # Sample noise that will be added to the latents
                noise = torch.randn_like(video_latents)
                batch_size, num_frames, num_channels, height, width = video_latents.shape

                # Sample a random timestep for each image
                timesteps = torch.randint(
                    0,
                    scheduler.config.num_train_timesteps,
                    (batch_size,),
                    dtype=torch.int64,
                    device=accelerator.device,
                )

                # Prepare rotary embeds
                image_rotary_emb = (
                    prepare_rotary_positional_embeddings(
                        height=height * VAE_SCALE_FACTOR_SPATIAL,
                        width=width * VAE_SCALE_FACTOR_SPATIAL,
                        num_frames=num_frames,
                        vae_scale_factor_spatial=VAE_SCALE_FACTOR_SPATIAL,
                        patch_size=model_config.patch_size,
                        patch_size_t=model_config.patch_size_t if hasattr(model_config, "patch_size_t") else None,
                        attention_head_dim=model_config.attention_head_dim,
                        device=accelerator.device,
                        base_height=RoPE_BASE_HEIGHT,
                        base_width=RoPE_BASE_WIDTH,
                    )
                    if model_config.use_rotary_positional_embeddings
                    else None
                )

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_video_latents = scheduler.add_noise(video_latents, noise, timesteps)
                noisy_model_input = torch.cat([noisy_video_latents, image_latents], dim=2)

                ofs_embed_dim = model_config.ofs_embed_dim if hasattr(model_config, "ofs_embed_dim") else None,
                ofs_emb = None if ofs_embed_dim is None else noisy_model_input.new_full((1,), fill_value=2.0)
                # Predict the noise residual
                model_output = transformer(
                    hidden_states=noisy_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timesteps,
                    ofs=ofs_emb,
                    image_rotary_emb=image_rotary_emb,
                    return_dict=False,
                )[0]

                model_pred = scheduler.get_velocity(model_output, noisy_video_latents, timesteps)

                weights = 1 / (1 - alphas_cumprod[timesteps])
                while len(weights.shape) < len(model_pred.shape):
                    weights = weights.unsqueeze(-1)

                target = video_latents

                loss = torch.mean(
                    (weights * (model_pred - target) ** 2).reshape(batch_size, -1),
                    dim=1,
                )
                loss = loss.mean()
                accelerator.backward(loss)

                if accelerator.sync_gradients and accelerator.distributed_type != DistributedType.DEEPSPEED:
                    gradient_norm_before_clip = get_gradient_norm(transformer.parameters())
                    accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
                    gradient_norm_after_clip = get_gradient_norm(transformer.parameters())
                    logs.update(
                        {
                            "gradient_norm_before_clip": gradient_norm_before_clip,
                            "gradient_norm_after_clip": gradient_norm_after_clip,
                        }
                    )

                if accelerator.state.deepspeed_plugin is None:
                    optimizer.step()
                    optimizer.zero_grad()

                if not args.use_cpu_offload_optimizer:
                    lr_scheduler.step()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                # Checkpointing
                if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                # Validation
                should_run_validation = args.validation_prompt is not None and (
                    args.validation_steps is not None and global_step % args.validation_steps == 0
                )
                if should_run_validation:
                    run_validation(args, accelerator, transformer, scheduler, model_config, weight_dtype)

            last_lr = lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else args.learning_rate
            logs.update(
                {
                    "loss": loss.detach().item(),
                    "lr": last_lr,
                }
            )
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            should_run_validation = args.validation_prompt is not None and (
                args.validation_epochs is not None and (epoch + 1) % args.validation_epochs == 0
            )
            if should_run_validation:
                run_validation(args, accelerator, transformer, scheduler, model_config, weight_dtype)

    accelerator.wait_for_everyone()

    if accelerator.is_main_process:
        transformer = unwrap_model(accelerator, transformer)
        dtype = (
            torch.float16
            if args.mixed_precision == "fp16"
            else torch.bfloat16
            if args.mixed_precision == "bf16"
            else torch.float32
        )
        transformer = transformer.to(dtype)
        transformer_lora_layers = get_peft_model_state_dict(transformer)

        CogVideoXImageToVideoPipeline.save_lora_weights(
            save_directory=args.output_dir,
            transformer_lora_layers=transformer_lora_layers,
        )

        # Cleanup trained models to save memory
        if args.load_tensors:
            del transformer
        else:
            del transformer, text_encoder, vae

        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.synchronize(accelerator.device)

        accelerator.print("===== Memory before testing =====")
        print_memory(accelerator.device)
        reset_memory(accelerator.device)

        # Final test inference
        pipe = CogVideoXImageToVideoPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
        )
        pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)

        if args.enable_slicing:
            pipe.vae.enable_slicing()
        if args.enable_tiling:
            pipe.vae.enable_tiling()
        if args.enable_model_cpu_offload:
            pipe.enable_model_cpu_offload()

        # Load LoRA weights
        lora_scaling = args.lora_alpha / args.rank
        pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora")
        pipe.set_adapters(["cogvideox-lora"], [lora_scaling])

        # Run inference
        validation_outputs = []
        if args.validation_prompt and args.num_validation_videos > 0:
            validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
            validation_images = args.validation_images.split(args.validation_prompt_separator)
            for validation_image, validation_prompt in zip(validation_images, validation_prompts):
                pipeline_args = {
                    "image": load_image(validation_image),
                    "prompt": validation_prompt,
                    "guidance_scale": args.guidance_scale,
                    "use_dynamic_cfg": args.use_dynamic_cfg,
                    "height": args.height,
                    "width": args.width,
                }

                video = log_validation(
                    accelerator=accelerator,
                    pipe=pipe,
                    args=args,
                    pipeline_args=pipeline_args,
                    is_final_validation=True,
                )
                validation_outputs.extend(video)

        accelerator.print("===== Memory after testing =====")
        print_memory(accelerator.device)
        reset_memory(accelerator.device)
        torch.cuda.synchronize(accelerator.device)

        if args.push_to_hub:
            save_model_card(
                repo_id,
                videos=validation_outputs,
                base_model=args.pretrained_model_name_or_path,
                validation_prompt=args.validation_prompt,
                repo_folder=args.output_dir,
                fps=args.fps,
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = get_args()
    main(args)