Spaces:
Runtime error
Runtime error
File size: 23,613 Bytes
91fb4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
#!/usr/bin/env python3
import argparse
import functools
import json
import os
import pathlib
import queue
import traceback
import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed as dist
from diffusers import AutoencoderKLCogVideoX
from diffusers.training_utils import set_seed
from diffusers.utils import export_to_video, get_logger
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from transformers import T5EncoderModel, T5Tokenizer
import decord # isort:skip
from dataset import BucketSampler, VideoDatasetWithResizing, VideoDatasetWithResizeAndRectangleCrop # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(__name__)
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
def check_height(x: Any) -> int:
x = int(x)
if x % 16 != 0:
raise argparse.ArgumentTypeError(
f"`--height_buckets` must be divisible by 16, but got {x} which does not fit criteria."
)
return x
def check_width(x: Any) -> int:
x = int(x)
if x % 16 != 0:
raise argparse.ArgumentTypeError(
f"`--width_buckets` must be divisible by 16, but got {x} which does not fit criteria."
)
return x
def check_frames(x: Any) -> int:
x = int(x)
if x % 4 != 0 and x % 4 != 1:
raise argparse.ArgumentTypeError(
f"`--frames_buckets` must be of form `4 * k` or `4 * k + 1`, but got {x} which does not fit criteria."
)
return x
def get_args() -> Dict[str, Any]:
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
default="THUDM/CogVideoX-2b",
help="Hugging Face model ID to use for tokenizer, text encoder and VAE.",
)
parser.add_argument("--data_root", type=str, required=True, help="Path to where training data is located.")
parser.add_argument(
"--dataset_file", type=str, default=None, help="Path to CSV file containing metadata about training data."
)
parser.add_argument(
"--caption_column",
type=str,
default="caption",
help="If using a CSV file via the `--dataset_file` argument, this should be the name of the column containing the captions. If using the folder structure format for data loading, this should be the name of the file containing line-separated captions (the file should be located in `--data_root`).",
)
parser.add_argument(
"--video_column",
type=str,
default="video",
help="If using a CSV file via the `--dataset_file` argument, this should be the name of the column containing the video paths. If using the folder structure format for data loading, this should be the name of the file containing line-separated video paths (the file should be located in `--data_root`).",
)
parser.add_argument(
"--id_token",
type=str,
default=None,
help="Identifier token appended to the start of each prompt if provided.",
)
parser.add_argument(
"--height_buckets",
nargs="+",
type=check_height,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--width_buckets",
nargs="+",
type=check_width,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--frame_buckets",
nargs="+",
type=check_frames,
default=[49],
)
parser.add_argument(
"--random_flip",
type=float,
default=None,
help="If random horizontal flip augmentation is to be used, this should be the flip probability.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Whether or not to use the pinned memory setting in pytorch dataloader.",
)
parser.add_argument(
"--video_reshape_mode",
type=str,
default=None,
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
)
parser.add_argument(
"--save_image_latents",
action="store_true",
help="Whether or not to encode and store image latents, which are required for image-to-video finetuning. The image latents are the first frame of input videos encoded with the VAE.",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to output directory where preprocessed videos/latents/embeddings will be saved.",
)
parser.add_argument("--max_num_frames", type=int, default=49, help="Maximum number of frames in output video.")
parser.add_argument(
"--max_sequence_length", type=int, default=226, help="Max sequence length of prompt embeddings."
)
parser.add_argument("--target_fps", type=int, default=8, help="Frame rate of output videos.")
parser.add_argument(
"--save_latents_and_embeddings",
action="store_true",
help="Whether to encode videos/captions to latents/embeddings and save them in pytorch serializable format.",
)
parser.add_argument(
"--use_slicing",
action="store_true",
help="Whether to enable sliced encoding/decoding in the VAE. Only used if `--save_latents_and_embeddings` is also used.",
)
parser.add_argument(
"--use_tiling",
action="store_true",
help="Whether to enable tiled encoding/decoding in the VAE. Only used if `--save_latents_and_embeddings` is also used.",
)
parser.add_argument("--batch_size", type=int, default=1, help="Number of videos to process at once in the VAE.")
parser.add_argument(
"--num_decode_threads",
type=int,
default=0,
help="Number of decoding threads for `decord` to use. The default `0` means to automatically determine required number of threads.",
)
parser.add_argument(
"--dtype",
type=str,
choices=["fp32", "fp16", "bf16"],
default="fp32",
help="Data type to use when generating latents and prompt embeddings.",
)
parser.add_argument("--seed", type=int, default=42, help="Seed for reproducibility.")
parser.add_argument(
"--num_artifact_workers", type=int, default=4, help="Number of worker threads for serializing artifacts."
)
return parser.parse_args()
def _get_t5_prompt_embeds(
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
prompt: Union[str, List[str]],
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
text_input_ids=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
def encode_prompt(
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
prompt: Union[str, List[str]],
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
text_input_ids=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt_embeds = _get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
text_input_ids=text_input_ids,
)
return prompt_embeds
def compute_prompt_embeddings(
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
prompts: List[str],
max_sequence_length: int,
device: torch.device,
dtype: torch.dtype,
requires_grad: bool = False,
):
if requires_grad:
prompt_embeds = encode_prompt(
tokenizer,
text_encoder,
prompts,
num_videos_per_prompt=1,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
else:
with torch.no_grad():
prompt_embeds = encode_prompt(
tokenizer,
text_encoder,
prompts,
num_videos_per_prompt=1,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds
to_pil_image = transforms.ToPILImage(mode="RGB")
def save_image(image: torch.Tensor, path: pathlib.Path) -> None:
image = image.to(dtype=torch.float32).clamp(-1, 1)
image = to_pil_image(image.float())
image.save(path)
def save_video(video: torch.Tensor, path: pathlib.Path, fps: int = 8) -> None:
video = video.to(dtype=torch.float32).clamp(-1, 1)
video = [to_pil_image(frame) for frame in video]
export_to_video(video, path, fps=fps)
def save_prompt(prompt: str, path: pathlib.Path) -> None:
with open(path, "w", encoding="utf-8") as file:
file.write(prompt)
def save_metadata(metadata: Dict[str, Any], path: pathlib.Path) -> None:
with open(path, "w", encoding="utf-8") as file:
file.write(json.dumps(metadata))
@torch.no_grad()
def serialize_artifacts(
batch_size: int,
fps: int,
images_dir: Optional[pathlib.Path] = None,
image_latents_dir: Optional[pathlib.Path] = None,
videos_dir: Optional[pathlib.Path] = None,
video_latents_dir: Optional[pathlib.Path] = None,
prompts_dir: Optional[pathlib.Path] = None,
prompt_embeds_dir: Optional[pathlib.Path] = None,
images: Optional[torch.Tensor] = None,
image_latents: Optional[torch.Tensor] = None,
videos: Optional[torch.Tensor] = None,
video_latents: Optional[torch.Tensor] = None,
prompts: Optional[List[str]] = None,
prompt_embeds: Optional[torch.Tensor] = None,
) -> None:
num_frames, height, width = videos.size(1), videos.size(3), videos.size(4)
metadata = [{"num_frames": num_frames, "height": height, "width": width}]
data_folder_mapper_list = [
(images, images_dir, lambda img, path: save_image(img[0], path), "png"),
(image_latents, image_latents_dir, torch.save, "pt"),
(videos, videos_dir, functools.partial(save_video, fps=fps), "mp4"),
(video_latents, video_latents_dir, torch.save, "pt"),
(prompts, prompts_dir, save_prompt, "txt"),
(prompt_embeds, prompt_embeds_dir, torch.save, "pt"),
(metadata, videos_dir, save_metadata, "txt"),
]
filenames = [uuid.uuid4() for _ in range(batch_size)]
for data, folder, save_fn, extension in data_folder_mapper_list:
if data is None:
continue
for slice, filename in zip(data, filenames):
if isinstance(slice, torch.Tensor):
slice = slice.clone().to("cpu")
path = folder.joinpath(f"{filename}.{extension}")
save_fn(slice, path)
def save_intermediates(output_queue: queue.Queue) -> None:
while True:
try:
item = output_queue.get(timeout=30)
if item is None:
break
serialize_artifacts(**item)
except queue.Empty:
continue
@torch.no_grad()
def main():
args = get_args()
set_seed(args.seed)
output_dir = pathlib.Path(args.output_dir)
tmp_dir = output_dir.joinpath("tmp")
output_dir.mkdir(parents=True, exist_ok=True)
tmp_dir.mkdir(parents=True, exist_ok=True)
# Create task queue for non-blocking serializing of artifacts
output_queue = queue.Queue()
save_thread = ThreadPoolExecutor(max_workers=args.num_artifact_workers)
save_future = save_thread.submit(save_intermediates, output_queue)
# Initialize distributed processing
if "LOCAL_RANK" in os.environ:
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
dist.init_process_group(backend="nccl")
world_size = dist.get_world_size()
rank = dist.get_rank()
else:
# Single GPU
local_rank = 0
world_size = 1
rank = 0
torch.cuda.set_device(rank)
# Create folders where intermediate tensors from each rank will be saved
images_dir = tmp_dir.joinpath(f"images/{rank}")
image_latents_dir = tmp_dir.joinpath(f"image_latents/{rank}")
videos_dir = tmp_dir.joinpath(f"videos/{rank}")
video_latents_dir = tmp_dir.joinpath(f"video_latents/{rank}")
prompts_dir = tmp_dir.joinpath(f"prompts/{rank}")
prompt_embeds_dir = tmp_dir.joinpath(f"prompt_embeds/{rank}")
images_dir.mkdir(parents=True, exist_ok=True)
image_latents_dir.mkdir(parents=True, exist_ok=True)
videos_dir.mkdir(parents=True, exist_ok=True)
video_latents_dir.mkdir(parents=True, exist_ok=True)
prompts_dir.mkdir(parents=True, exist_ok=True)
prompt_embeds_dir.mkdir(parents=True, exist_ok=True)
weight_dtype = DTYPE_MAPPING[args.dtype]
target_fps = args.target_fps
# 1. Dataset
dataset_init_kwargs = {
"data_root": args.data_root,
"dataset_file": args.dataset_file,
"caption_column": args.caption_column,
"video_column": args.video_column,
"max_num_frames": args.max_num_frames,
"id_token": args.id_token,
"height_buckets": args.height_buckets,
"width_buckets": args.width_buckets,
"frame_buckets": args.frame_buckets,
"load_tensors": False,
"random_flip": args.random_flip,
"image_to_video": args.save_image_latents,
}
if args.video_reshape_mode is None:
dataset = VideoDatasetWithResizing(**dataset_init_kwargs)
else:
dataset = VideoDatasetWithResizeAndRectangleCrop(
video_reshape_mode=args.video_reshape_mode, **dataset_init_kwargs
)
original_dataset_size = len(dataset)
# Split data among GPUs
if world_size > 1:
samples_per_gpu = original_dataset_size // world_size
start_index = rank * samples_per_gpu
end_index = start_index + samples_per_gpu
if rank == world_size - 1:
end_index = original_dataset_size # Make sure the last GPU gets the remaining data
# Slice the data
dataset.prompts = dataset.prompts[start_index:end_index]
dataset.video_paths = dataset.video_paths[start_index:end_index]
else:
pass
rank_dataset_size = len(dataset)
# 2. Dataloader
def collate_fn(data):
prompts = [x["prompt"] for x in data[0]]
images = None
if args.save_image_latents:
images = [x["image"] for x in data[0]]
images = torch.stack(images).to(dtype=weight_dtype, non_blocking=True)
videos = [x["video"] for x in data[0]]
videos = torch.stack(videos).to(dtype=weight_dtype, non_blocking=True)
return {
"images": images,
"videos": videos,
"prompts": prompts,
}
dataloader = DataLoader(
dataset,
batch_size=1,
sampler=BucketSampler(dataset, batch_size=args.batch_size, shuffle=True, drop_last=False),
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
pin_memory=args.pin_memory,
)
# 3. Prepare models
device = f"cuda:{rank}"
if args.save_latents_and_embeddings:
tokenizer = T5Tokenizer.from_pretrained(args.model_id, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(
args.model_id, subfolder="text_encoder", torch_dtype=weight_dtype
)
text_encoder = text_encoder.to(device)
vae = AutoencoderKLCogVideoX.from_pretrained(args.model_id, subfolder="vae", torch_dtype=weight_dtype)
vae = vae.to(device)
if args.use_slicing:
vae.enable_slicing()
if args.use_tiling:
vae.enable_tiling()
# 4. Compute latents and embeddings and save
if rank == 0:
iterator = tqdm(
dataloader, desc="Encoding", total=(rank_dataset_size + args.batch_size - 1) // args.batch_size
)
else:
iterator = dataloader
for step, batch in enumerate(iterator):
try:
images = None
image_latents = None
video_latents = None
prompt_embeds = None
if args.save_image_latents:
images = batch["images"].to(device, non_blocking=True)
images = images.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
videos = batch["videos"].to(device, non_blocking=True)
videos = videos.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
prompts = batch["prompts"]
# Encode videos & images
if args.save_latents_and_embeddings:
if args.use_slicing:
if args.save_image_latents:
encoded_slices = [vae._encode(image_slice) for image_slice in images.split(1)]
image_latents = torch.cat(encoded_slices)
image_latents = image_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)
encoded_slices = [vae._encode(video_slice) for video_slice in videos.split(1)]
video_latents = torch.cat(encoded_slices)
else:
if args.save_image_latents:
image_latents = vae._encode(images)
image_latents = image_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)
video_latents = vae._encode(videos)
video_latents = video_latents.to(memory_format=torch.contiguous_format, dtype=weight_dtype)
# Encode prompts
prompt_embeds = compute_prompt_embeddings(
tokenizer,
text_encoder,
prompts,
args.max_sequence_length,
device,
weight_dtype,
requires_grad=False,
)
if images is not None:
images = (images.permute(0, 2, 1, 3, 4) + 1) / 2
videos = (videos.permute(0, 2, 1, 3, 4) + 1) / 2
output_queue.put(
{
"batch_size": len(prompts),
"fps": target_fps,
"images_dir": images_dir,
"image_latents_dir": image_latents_dir,
"videos_dir": videos_dir,
"video_latents_dir": video_latents_dir,
"prompts_dir": prompts_dir,
"prompt_embeds_dir": prompt_embeds_dir,
"images": images,
"image_latents": image_latents,
"videos": videos,
"video_latents": video_latents,
"prompts": prompts,
"prompt_embeds": prompt_embeds,
}
)
except Exception:
print("-------------------------")
print(f"An exception occurred while processing data: {rank=}, {world_size=}, {step=}")
traceback.print_exc()
print("-------------------------")
# 5. Complete distributed processing
if world_size > 1:
dist.barrier()
dist.destroy_process_group()
output_queue.put(None)
save_thread.shutdown(wait=True)
save_future.result()
# 6. Combine results from each rank
if rank == 0:
print(
f"Completed preprocessing latents and embeddings. Temporary files from all ranks saved to `{tmp_dir.as_posix()}`"
)
# Move files from each rank to common directory
for subfolder, extension in [
("images", "png"),
("image_latents", "pt"),
("videos", "mp4"),
("video_latents", "pt"),
("prompts", "txt"),
("prompt_embeds", "pt"),
("videos", "txt"),
]:
tmp_subfolder = tmp_dir.joinpath(subfolder)
combined_subfolder = output_dir.joinpath(subfolder)
combined_subfolder.mkdir(parents=True, exist_ok=True)
pattern = f"*.{extension}"
for file in tmp_subfolder.rglob(pattern):
file.replace(combined_subfolder / file.name)
# Remove temporary directories
def rmdir_recursive(dir: pathlib.Path) -> None:
for child in dir.iterdir():
if child.is_file():
child.unlink()
else:
rmdir_recursive(child)
dir.rmdir()
rmdir_recursive(tmp_dir)
# Combine prompts and videos into individual text files and single jsonl
prompts_folder = output_dir.joinpath("prompts")
prompts = []
stems = []
for filename in prompts_folder.rglob("*.txt"):
with open(filename, "r") as file:
prompts.append(file.read().strip())
stems.append(filename.stem)
prompts_txt = output_dir.joinpath("prompts.txt")
videos_txt = output_dir.joinpath("videos.txt")
data_jsonl = output_dir.joinpath("data.jsonl")
with open(prompts_txt, "w") as file:
for prompt in prompts:
file.write(f"{prompt}\n")
with open(videos_txt, "w") as file:
for stem in stems:
file.write(f"videos/{stem}.mp4\n")
with open(data_jsonl, "w") as file:
for prompt, stem in zip(prompts, stems):
video_metadata_txt = output_dir.joinpath(f"videos/{stem}.txt")
with open(video_metadata_txt, "r", encoding="utf-8") as metadata_file:
metadata = json.loads(metadata_file.read())
data = {
"prompt": prompt,
"prompt_embed": f"prompt_embeds/{stem}.pt",
"image": f"images/{stem}.png",
"image_latent": f"image_latents/{stem}.pt",
"video": f"videos/{stem}.mp4",
"video_latent": f"video_latents/{stem}.pt",
"metadata": metadata,
}
file.write(json.dumps(data) + "\n")
print(f"Completed preprocessing. All files saved to `{output_dir.as_posix()}`")
if __name__ == "__main__":
main()
|