VideoModelStudio / captioning_service.py
jbilcke-hf's picture
jbilcke-hf HF staff
restore missing dependencies
a73397c
raw
history blame
23.2 kB
import logging
import torch
import shutil
import gradio as gr
import numpy as np
from decord import VideoReader, cpu
from pathlib import Path
from typing import Any, Tuple, Dict, Optional, AsyncGenerator, List
import asyncio
from dataclasses import dataclass
from datetime import datetime
import cv2
import copy
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
from utils import extract_scene_info, is_image_file, is_video_file
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
logger = logging.getLogger(__name__)
@dataclass
class CaptioningProgress:
video_name: str
total_frames: int
processed_frames: int
status: str
started_at: datetime
completed_at: Optional[datetime] = None
error: Optional[str] = None
class CaptioningService:
_instance = None
_model = None
_tokenizer = None
_image_processor = None
_model_loading = None
_loop = None
def __new__(cls, model_name=CAPTIONING_MODEL):
if cls._instance is not None:
return cls._instance
instance = super().__new__(cls)
if PRELOAD_CAPTIONING_MODEL:
cls._instance = instance
try:
cls._loop = asyncio.get_running_loop()
except RuntimeError:
cls._loop = asyncio.new_event_loop()
asyncio.set_event_loop(cls._loop)
if not USE_MOCK_CAPTIONING_MODEL and cls._model_loading is None:
cls._model_loading = cls._loop.create_task(cls._background_load_model(model_name))
return instance
def __init__(self, model_name=CAPTIONING_MODEL):
if hasattr(self, 'model_name'): # Already initialized
return
self.model_name = model_name
self.tokenizer = None
self.model = None
self.image_processor = None
self.active_tasks: Dict[str, CaptioningProgress] = {}
self._should_stop = False
self._model_loaded = False
@classmethod
async def _background_load_model(cls, model_name):
"""Background task to load the model"""
try:
logger.info("Starting background model loading...")
if not cls._loop:
cls._loop = asyncio.get_running_loop()
def load_model():
try:
tokenizer, model, image_processor, _ = load_pretrained_model(
model_name, None, "llava_qwen",
torch_dtype="bfloat16", device_map="auto"
)
model.eval()
return tokenizer, model, image_processor
except Exception as e:
logger.error(f"Error in load_model: {str(e)}")
raise
result = await cls._loop.run_in_executor(None, load_model)
cls._tokenizer, cls._model, cls._image_processor = result
logger.info("Background model loading completed successfully!")
except Exception as e:
logger.error(f"Background model loading failed: {str(e)}")
cls._model_loading = None
raise
async def ensure_model_loaded(self):
"""Ensure model is loaded before processing"""
if USE_MOCK_CAPTIONING_MODEL:
logger.info("Using mock model, skipping model loading")
self.__class__._model_loading = None
self._model_loaded = True
return
if not self._model_loaded:
try:
if PRELOAD_CAPTIONING_MODEL and self.__class__._model_loading:
logger.info("Waiting for background model loading to complete...")
if self.__class__._loop and self.__class__._loop != asyncio.get_running_loop():
logger.warning("Different event loop detected, creating new loading task")
self.__class__._model_loading = None
await self._load_model_sync()
else:
await self.__class__._model_loading
self.model = self.__class__._model
self.tokenizer = self.__class__._tokenizer
self.image_processor = self.__class__._image_processor
else:
await self._load_model_sync()
self._model_loaded = True
logger.info("Model loading completed!")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
async def _load_model_sync(self):
"""Synchronously load the model"""
logger.info("Loading model synchronously...")
current_loop = asyncio.get_running_loop()
def load_model():
return load_pretrained_model(
self.model_name, None, "llava_qwen",
torch_dtype="bfloat16", device_map="auto"
)
self.tokenizer, self.model, self.image_processor, _ = await current_loop.run_in_executor(
None, load_model
)
self.model.eval()
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> tuple[np.ndarray, str, float]:
"""Load and preprocess video frames with strict limits
Args:
video_path: Path to video file
max_frames_num: Maximum number of frames to extract (default: 64)
fps: Frames per second to sample (default: 1)
force_sample: Whether to force uniform sampling (default: True)
Returns:
Tuple of (frames, frame_times_str, video_time)
"""
video_path_str = str(video_path)
logger.debug(f"Loading video: {video_path_str}")
# Handle empty video case
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3)), "", 0
vr = VideoReader(video_path_str, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
# Calculate frame indices with uniform sampling
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
# Force uniform sampling if too many frames
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time_str = ",".join([f"{i:.2f}s" for i in frame_time])
try:
frames = vr.get_batch(frame_idx).asnumpy()
logger.debug(f"Loaded {len(frames)} frames with shape {frames.shape}")
return frames, frame_time_str, video_time
except Exception as e:
logger.error(f"Error loading video frames: {str(e)}")
raise
async def process_video(self, video_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
try:
video_name = video_path.name
logger.info(f"Starting processing of video: {video_name}")
# Load video metadata with strict frame limits
logger.debug(f"Loading video metadata for {video_name}")
loop = asyncio.get_event_loop()
vr = await loop.run_in_executor(None, lambda: VideoReader(str(video_path), ctx=cpu(0)))
total_frames = len(vr)
progress = CaptioningProgress(
video_name=video_name,
total_frames=total_frames,
processed_frames=0,
status="initializing",
started_at=datetime.now()
)
self.active_tasks[video_name] = progress
yield progress, None
# Get parent caption if this is a clip
parent_caption = ""
if "___" in video_path.stem:
parent_name, _ = extract_scene_info(video_path.stem)
parent_txt_path = VIDEOS_TO_SPLIT_PATH / f"{parent_name}.txt"
if parent_txt_path.exists():
parent_caption = parent_txt_path.read_text().strip()
# Ensure model is loaded before processing
await self.ensure_model_loaded()
if USE_MOCK_CAPTIONING_MODEL:
# Even in mock mode, we'll generate a caption that shows we processed parent info
clip_caption = f"This is a test caption for {video_name}"
# Combine clip caption with parent caption
if parent_caption:
full_caption = f"{clip_caption}\n{parent_caption}"
else:
full_caption = clip_caption
if prompt_prefix and not full_caption.startswith(prompt_prefix):
full_caption = f"{prompt_prefix}{full_caption}"
# Write the caption file
txt_path = video_path.with_suffix('.txt')
txt_path.write_text(full_caption)
logger.debug(f"Mock mode: Saved caption to {txt_path}")
progress.status = "completed"
progress.processed_frames = total_frames
progress.completed_at = datetime.now()
yield progress, full_caption
else:
# Process frames with strict limits
max_frames_num = 64 # Maximum frames supported by the model
frames, frame_times_str, video_time = await loop.run_in_executor(
None,
lambda: self._load_video(video_path, max_frames_num, fps=1, force_sample=True)
)
# Process all frames at once using the image processor
processed_frames = await loop.run_in_executor(
None,
lambda: self.image_processor.preprocess(
frames,
return_tensors="pt"
)["pixel_values"]
)
# Update progress
progress.processed_frames = len(frames)
progress.status = "generating caption"
yield progress, None
# Move processed frames to GPU
video_tensor = processed_frames.to('cuda').bfloat16()
# Use proper conversation template and tokens
conv_template = "qwen_1_5"
time_instruction = (f"The video lasts for {video_time:.2f} seconds, and {len(frames)} "
f"frames are uniformly sampled from it. These frames are located at {frame_times_str}.")
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], full_question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
# Cap the output length to prevent hallucination
max_new_tokens = 512 # Reasonable limit for caption length
input_ids = await loop.run_in_executor(
None,
lambda: tokenizer_image_token(prompt_question, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
)
# Generate caption with controlled parameters
with torch.no_grad():
output = await loop.run_in_executor(
None,
lambda: self.model.generate(
input_ids,
images=[video_tensor],
modalities=["video"],
do_sample=False,
temperature=0,
max_new_tokens=max_new_tokens,
)
)
clip_caption = await loop.run_in_executor(
None,
lambda: self.tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
)
# Remove the instruction/question part from the response
if time_instruction in clip_caption:
clip_caption = clip_caption.split(time_instruction)[1].strip()
if prompt in clip_caption:
clip_caption = clip_caption.split(prompt)[1].strip()
# Combine captions with proper formatting
if parent_caption:
full_caption = f"{clip_caption}\n{parent_caption}"
else:
full_caption = clip_caption
if prompt_prefix and not full_caption.startswith(prompt_prefix):
full_caption = f"{prompt_prefix}{full_caption}"
# Write caption
txt_path = video_path.with_suffix('.txt')
txt_path.write_text(full_caption)
progress.status = "completed"
progress.completed_at = datetime.now()
yield progress, full_caption
except Exception as e:
progress.status = "error"
progress.error = str(e)
progress.completed_at = datetime.now()
yield progress, None
raise
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
"""Process a single image for captioning"""
try:
image_name = image_path.name
logger.info(f"Starting processing of image: {image_name}")
progress = CaptioningProgress(
video_name=image_name, # Reusing video_name field for images
total_frames=1,
processed_frames=0,
status="initializing",
started_at=datetime.now()
)
self.active_tasks[image_name] = progress
yield progress, None
# Ensure model is loaded
await self.ensure_model_loaded()
if USE_MOCK_CAPTIONING_MODEL:
progress.status = "completed"
progress.processed_frames = 1
progress.completed_at = datetime.now()
print("yielding fake")
yield progress, "This is a test image caption"
return
# Read and process image
loop = asyncio.get_event_loop()
image = await loop.run_in_executor(
None,
lambda: cv2.imread(str(image_path))
)
if image is None:
raise ValueError(f"Could not read image: {str(image_path)}")
# Convert BGR to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Process image
processed_image = await loop.run_in_executor(
None,
lambda: self.image_processor.preprocess(
image,
return_tensors="pt"
)["pixel_values"]
)
progress.processed_frames = 1
progress.status = "generating caption"
yield progress, None
# Move to GPU and generate caption
image_tensor = processed_image.to('cuda').bfloat16()
full_prompt = f"<image>{prompt}"
input_ids = await loop.run_in_executor(
None,
lambda: tokenizer_image_token(full_prompt, self.tokenizer, return_tensors="pt").unsqueeze(0).to('cuda')
)
with torch.no_grad():
output = await loop.run_in_executor(
None,
lambda: self.model.generate(
input_ids,
images=[image_tensor],
modalities=["image"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
)
caption = await loop.run_in_executor(
None,
lambda: self.tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
)
progress.status = "completed"
progress.completed_at = datetime.now()
gr.Info(f"Successfully generated caption for {image_name}")
yield progress, caption
except Exception as e:
progress.status = "error"
progress.error = str(e)
progress.completed_at = datetime.now()
yield progress, None
raise gr.Error(f"Error processing image: {str(e)}")
async def start_caption_generation(self, custom_prompt: str, prompt_prefix: str) -> AsyncGenerator[List[List[str]], None]:
"""Iterates over clips to auto-generate captions asynchronously."""
try:
logger.info("Starting auto-caption generation")
# Use provided prompt or default
default_prompt = DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
prompt = custom_prompt.strip() or default_prompt
logger.debug(f"Using prompt: {prompt}")
# Find files needing captions
video_files = list(STAGING_PATH.glob("*.mp4"))
image_files = [f for f in STAGING_PATH.glob("*") if is_image_file(f)]
all_files = video_files + image_files
# Filter for files missing captions or with empty caption files
files_to_process = []
for file_path in all_files:
caption_path = file_path.with_suffix('.txt')
needs_caption = (
not caption_path.exists() or
caption_path.stat().st_size == 0 or
caption_path.read_text().strip() == ""
)
if needs_caption:
files_to_process.append(file_path)
logger.info(f"Found {len(files_to_process)} files needing captions")
if not files_to_process:
logger.info("No files need captioning")
yield []
return
self._should_stop = False
self.active_tasks.clear()
status_update: Dict[str, Dict[str, Any]] = {}
for file_path in all_files:
if self._should_stop:
break
try:
print(f"we are in file_path {str(file_path)}")
# Choose appropriate processing method based on file type
if is_video_file(file_path):
process_gen = self.process_video(file_path, prompt, prompt_prefix)
else:
process_gen = self.process_image(file_path, prompt, prompt_prefix)
print("got process_gen = ", process_gen)
async for progress, caption in process_gen:
print(f"process_gen contains this caption = {caption}")
if caption and prompt_prefix and not caption.startswith(prompt_prefix):
caption = f"{prompt_prefix}{caption}"
# Save caption
if caption:
txt_path = file_path.with_suffix('.txt')
txt_path.write_text(caption)
logger.debug(f"Progress update: {progress.status}")
# Store progress info
status_update[file_path.name] = {
"status": progress.status,
"frames": progress.processed_frames,
"total": progress.total_frames
}
# Convert to list format for Gradio DataFrame
rows = []
for file_name, info in status_update.items():
status = info["status"]
if status == "processing":
percent = (info["frames"] / info["total"]) * 100
status = f"Analyzing... {percent:.1f}% ({info['frames']}/{info['total']} frames)"
elif status == "generating caption":
status = "Generating caption..."
elif status == "error":
status = f"Error: {progress.error}"
elif status == "completed":
status = "Completed"
rows.append([file_name, status])
yield rows
await asyncio.sleep(0.1)
except Exception as e:
logger.error(f"Error processing file {file_path}: {str(e)}", exc_info=True)
rows = [[str(file_path.name), f"Error: {str(e)}"]]
yield rows
continue
logger.info("Auto-caption generation completed, cyping assets to the training dir..")
copy_files_to_training_dir(prompt_prefix)
except Exception as e:
logger.error(f"Error in start_caption_generation: {str(e)}")
yield [[str(e), "error"]]
raise
def stop_captioning(self):
"""Stop all ongoing captioning tasks"""
logger.info("Stopping all captioning tasks")
self._should_stop = True
def close(self):
"""Clean up resources"""
logger.info("Cleaning up captioning service resources")
if hasattr(self, 'model'):
del self.model
if hasattr(self, 'tokenizer'):
del self.tokenizer
if hasattr(self, 'image_processor'):
del self.image_processor
torch.cuda.empty_cache()