Spaces:
Runtime error
Runtime error
import os | |
from dataclasses import dataclass, field | |
from typing import Dict, Any, Optional, List, Tuple | |
from pathlib import Path | |
from utils import parse_bool_env | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE")) | |
# Base storage path | |
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data')) | |
# Subdirectories for different data types | |
VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split" # Raw uploaded/downloaded files | |
STAGING_PATH = STORAGE_PATH / "staging" # This is where files that are captioned or need captioning are waiting | |
TRAINING_PATH = STORAGE_PATH / "training" # Folder containing the final training dataset | |
TRAINING_VIDEOS_PATH = TRAINING_PATH / "videos" # Captioned clips ready for training | |
MODEL_PATH = STORAGE_PATH / "model" # Model checkpoints and files | |
OUTPUT_PATH = STORAGE_PATH / "output" # Training outputs and logs | |
LOG_FILE_PATH = OUTPUT_PATH / "last_session.log" | |
# On the production server we can afford to preload the big model | |
PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL')) | |
CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
DEFAULT_PROMPT_PREFIX = "In the style of TOK, " | |
# This is only use to debug things in local | |
USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL')) | |
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full description of the following video: camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings" | |
# Create directories | |
STORAGE_PATH.mkdir(parents=True, exist_ok=True) | |
VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True) | |
STAGING_PATH.mkdir(parents=True, exist_ok=True) | |
TRAINING_PATH.mkdir(parents=True, exist_ok=True) | |
TRAINING_VIDEOS_PATH.mkdir(parents=True, exist_ok=True) | |
MODEL_PATH.mkdir(parents=True, exist_ok=True) | |
OUTPUT_PATH.mkdir(parents=True, exist_ok=True) | |
# Image normalization settings | |
NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower() | |
if NORMALIZE_IMAGES_TO not in ['png', 'jpg']: | |
raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'") | |
JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97')) | |
MODEL_TYPES = { | |
"HunyuanVideo (LoRA)": "hunyuan_video", | |
"LTX-Video (LoRA)": "ltx_video" | |
} | |
# it is best to use resolutions that are powers of 8 | |
# The resolution should be divisible by 32 | |
# so we cannot use 1080, 540 etc as they are not divisible by 32 | |
TRAINING_WIDTH = 768 # 32 * 24 | |
TRAINING_HEIGHT = 512 # 32 * 16 | |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) | |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) | |
# 1056 = 32 * 33 (divided by 2: 544 = 17 * 32) | |
# 1024 = 32 * 32 (divided by 2: 512 = 16 * 32) | |
# it is important that the resolution buckets properly cover the training dataset, | |
# or else that we exclude from the dataset videos that are out of this range | |
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here | |
TRAINING_BUCKETS = [ | |
(1, TRAINING_HEIGHT, TRAINING_WIDTH), # 1 | |
(8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 8 + 1 | |
(8 * 2 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 16 + 1 | |
(8 * 4 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 32 + 1 | |
(8 * 6 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 48 + 1 | |
(8 * 8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 64 + 1 | |
(8 * 10 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 80 + 1 | |
(8 * 12 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 96 + 1 | |
(8 * 14 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 112 + 1 | |
(8 * 16 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 128 + 1 | |
(8 * 18 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 144 + 1 | |
(8 * 20 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 160 + 1 | |
(8 * 22 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 176 + 1 | |
(8 * 24 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 192 + 1 | |
(8 * 28 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 224 + 1 | |
(8 * 32 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 256 + 1 | |
] | |
class TrainingConfig: | |
"""Configuration class for finetrainers training""" | |
# Required arguments must come first | |
model_name: str | |
pretrained_model_name_or_path: str | |
data_root: str | |
output_dir: str | |
# Optional arguments follow | |
revision: Optional[str] = None | |
variant: Optional[str] = None | |
cache_dir: Optional[str] = None | |
# Dataset arguments | |
# note: video_column and caption_column serve a dual purpose, | |
# when using the CSV mode they have to be CSV column names, | |
# otherwise they have to be filename (relative to the data_root dir path) | |
video_column: str = "videos.txt" | |
caption_column: str = "prompts.txt" | |
id_token: Optional[str] = None | |
video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: TRAINING_BUCKETS) | |
video_reshape_mode: str = "center" | |
caption_dropout_p: float = 0.05 | |
caption_dropout_technique: str = "empty" | |
precompute_conditions: bool = False | |
# Diffusion arguments | |
flow_resolution_shifting: bool = False | |
flow_weighting_scheme: str = "none" | |
flow_logit_mean: float = 0.0 | |
flow_logit_std: float = 1.0 | |
flow_mode_scale: float = 1.29 | |
# Training arguments | |
training_type: str = "lora" | |
seed: int = 42 | |
mixed_precision: str = "bf16" | |
batch_size: int = 1 | |
train_epochs: int = 70 | |
lora_rank: int = 128 | |
lora_alpha: int = 128 | |
target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"]) | |
gradient_accumulation_steps: int = 1 | |
gradient_checkpointing: bool = True | |
checkpointing_steps: int = 500 | |
checkpointing_limit: Optional[int] = 2 | |
resume_from_checkpoint: Optional[str] = None | |
enable_slicing: bool = True | |
enable_tiling: bool = True | |
# Optimizer arguments | |
optimizer: str = "adamw" | |
lr: float = 3e-5 | |
scale_lr: bool = False | |
lr_scheduler: str = "constant_with_warmup" | |
lr_warmup_steps: int = 100 | |
lr_num_cycles: int = 1 | |
lr_power: float = 1.0 | |
beta1: float = 0.9 | |
beta2: float = 0.95 | |
weight_decay: float = 1e-4 | |
epsilon: float = 1e-8 | |
max_grad_norm: float = 1.0 | |
# Miscellaneous arguments | |
tracker_name: str = "finetrainers" | |
report_to: str = "wandb" | |
nccl_timeout: int = 1800 | |
def hunyuan_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig': | |
"""Configuration for Hunyuan video-to-video LoRA training""" | |
return cls( | |
model_name="hunyuan_video", | |
pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_epochs=70, | |
lr=2e-5, | |
gradient_checkpointing=True, | |
id_token="afkx", | |
gradient_accumulation_steps=1, | |
lora_rank=128, | |
lora_alpha=128, | |
video_resolution_buckets=TRAINING_BUCKETS, | |
caption_dropout_p=0.05, | |
flow_weighting_scheme="none" # Hunyuan specific | |
) | |
def ltx_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig': | |
"""Configuration for LTX-Video LoRA training""" | |
return cls( | |
model_name="ltx_video", | |
pretrained_model_name_or_path="Lightricks/LTX-Video", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_epochs=70, | |
lr=3e-5, | |
gradient_checkpointing=True, | |
id_token="BW_STYLE", | |
gradient_accumulation_steps=4, | |
lora_rank=128, | |
lora_alpha=128, | |
video_resolution_buckets=TRAINING_BUCKETS, | |
caption_dropout_p=0.05, | |
flow_weighting_scheme="logit_normal" # LTX specific | |
) | |
def to_args_list(self) -> List[str]: | |
"""Convert config to command line arguments list""" | |
args = [] | |
# Model arguments | |
# Add model_name (required argument) | |
args.extend(["--model_name", self.model_name]) | |
args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path]) | |
if self.revision: | |
args.extend(["--revision", self.revision]) | |
if self.variant: | |
args.extend(["--variant", self.variant]) | |
if self.cache_dir: | |
args.extend(["--cache_dir", self.cache_dir]) | |
# Dataset arguments | |
args.extend(["--data_root", self.data_root]) | |
args.extend(["--video_column", self.video_column]) | |
args.extend(["--caption_column", self.caption_column]) | |
if self.id_token: | |
args.extend(["--id_token", self.id_token]) | |
# Add video resolution buckets | |
if self.video_resolution_buckets: | |
bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets] | |
args.extend(["--video_resolution_buckets"] + bucket_strs) | |
if self.video_reshape_mode: | |
args.extend(["--video_reshape_mode", self.video_reshape_mode]) | |
args.extend(["--caption_dropout_p", str(self.caption_dropout_p)]) | |
args.extend(["--caption_dropout_technique", self.caption_dropout_technique]) | |
if self.precompute_conditions: | |
args.append("--precompute_conditions") | |
# Diffusion arguments | |
if self.flow_resolution_shifting: | |
args.append("--flow_resolution_shifting") | |
args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme]) | |
args.extend(["--flow_logit_mean", str(self.flow_logit_mean)]) | |
args.extend(["--flow_logit_std", str(self.flow_logit_std)]) | |
args.extend(["--flow_mode_scale", str(self.flow_mode_scale)]) | |
# Training arguments | |
args.extend(["--training_type", self.training_type]) | |
args.extend(["--seed", str(self.seed)]) | |
# we don't use this, because mixed precision is handled by accelerate launch, not by the training script itself. | |
#args.extend(["--mixed_precision", self.mixed_precision]) | |
args.extend(["--batch_size", str(self.batch_size)]) | |
args.extend(["--train_epochs", str(self.train_epochs)]) | |
args.extend(["--rank", str(self.lora_rank)]) | |
args.extend(["--lora_alpha", str(self.lora_alpha)]) | |
args.extend(["--target_modules"] + self.target_modules) | |
args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)]) | |
if self.gradient_checkpointing: | |
args.append("--gradient_checkpointing") | |
args.extend(["--checkpointing_steps", str(self.checkpointing_steps)]) | |
if self.checkpointing_limit: | |
args.extend(["--checkpointing_limit", str(self.checkpointing_limit)]) | |
if self.resume_from_checkpoint: | |
args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint]) | |
if self.enable_slicing: | |
args.append("--enable_slicing") | |
if self.enable_tiling: | |
args.append("--enable_tiling") | |
# Optimizer arguments | |
args.extend(["--optimizer", self.optimizer]) | |
args.extend(["--lr", str(self.lr)]) | |
if self.scale_lr: | |
args.append("--scale_lr") | |
args.extend(["--lr_scheduler", self.lr_scheduler]) | |
args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)]) | |
args.extend(["--lr_num_cycles", str(self.lr_num_cycles)]) | |
args.extend(["--lr_power", str(self.lr_power)]) | |
args.extend(["--beta1", str(self.beta1)]) | |
args.extend(["--beta2", str(self.beta2)]) | |
args.extend(["--weight_decay", str(self.weight_decay)]) | |
args.extend(["--epsilon", str(self.epsilon)]) | |
args.extend(["--max_grad_norm", str(self.max_grad_norm)]) | |
# Miscellaneous arguments | |
args.extend(["--tracker_name", self.tracker_name]) | |
args.extend(["--output_dir", self.output_dir]) | |
args.extend(["--report_to", self.report_to]) | |
args.extend(["--nccl_timeout", str(self.nccl_timeout)]) | |
# normally this is disabled by default, but there was a bug in finetrainers | |
# so I had to fix it in trainer.py to make sure we check for push_to-hub | |
#args.append("--push_to_hub") | |
#args.extend(["--hub_token", str(False)]) | |
#args.extend(["--hub_model_id", str(False)]) | |
# If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like | |
# "In this video, ...", "This video features ...", etc. | |
# To remove a simple subset of these phrases, you can specify | |
# --remove_common_llm_caption_prefixes when starting training. | |
args.append("--remove_common_llm_caption_prefixes") | |
return args |