Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import functools | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
from accelerate.logging import get_logger | |
from ..constants import FINETRAINERS_LOG_LEVEL | |
logger = get_logger("finetrainers") # pylint: disable=invalid-name | |
logger.setLevel(FINETRAINERS_LOG_LEVEL) | |
class ModelHook: | |
r""" | |
A hook that contains callbacks to be executed just before and after the forward method of a model. | |
""" | |
_is_stateful = False | |
def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module: | |
r""" | |
Hook that is executed when a model is initialized. | |
Args: | |
module (`torch.nn.Module`): | |
The module attached to this hook. | |
""" | |
return module | |
def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module: | |
r""" | |
Hook that is executed when a model is deinitalized. | |
Args: | |
module (`torch.nn.Module`): | |
The module attached to this hook. | |
""" | |
module.forward = module._old_forward | |
del module._old_forward | |
return module | |
def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]: | |
r""" | |
Hook that is executed just before the forward method of the model. | |
Args: | |
module (`torch.nn.Module`): | |
The module whose forward pass will be executed just after this event. | |
args (`Tuple[Any]`): | |
The positional arguments passed to the module. | |
kwargs (`Dict[Str, Any]`): | |
The keyword arguments passed to the module. | |
Returns: | |
`Tuple[Tuple[Any], Dict[Str, Any]]`: | |
A tuple with the treated `args` and `kwargs`. | |
""" | |
return args, kwargs | |
def post_forward(self, module: torch.nn.Module, output: Any) -> Any: | |
r""" | |
Hook that is executed just after the forward method of the model. | |
Args: | |
module (`torch.nn.Module`): | |
The module whose forward pass been executed just before this event. | |
output (`Any`): | |
The output of the module. | |
Returns: | |
`Any`: The processed `output`. | |
""" | |
return output | |
def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module: | |
r""" | |
Hook that is executed when the hook is detached from a module. | |
Args: | |
module (`torch.nn.Module`): | |
The module detached from this hook. | |
""" | |
return module | |
def reset_state(self, module: torch.nn.Module): | |
if self._is_stateful: | |
raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.") | |
return module | |
class HookRegistry: | |
def __init__(self, module_ref: torch.nn.Module) -> None: | |
super().__init__() | |
self.hooks: Dict[str, ModelHook] = {} | |
self._module_ref = module_ref | |
self._hook_order = [] | |
def register_hook(self, hook: ModelHook, name: str) -> None: | |
if name in self.hooks.keys(): | |
logger.warning(f"Hook with name {name} already exists, replacing it.") | |
if hasattr(self._module_ref, "_old_forward"): | |
old_forward = self._module_ref._old_forward | |
else: | |
old_forward = self._module_ref.forward | |
self._module_ref._old_forward = self._module_ref.forward | |
self._module_ref = hook.initialize_hook(self._module_ref) | |
if hasattr(hook, "new_forward"): | |
rewritten_forward = hook.new_forward | |
def new_forward(module, *args, **kwargs): | |
args, kwargs = hook.pre_forward(module, *args, **kwargs) | |
output = rewritten_forward(module, *args, **kwargs) | |
return hook.post_forward(module, output) | |
else: | |
def new_forward(module, *args, **kwargs): | |
args, kwargs = hook.pre_forward(module, *args, **kwargs) | |
output = old_forward(*args, **kwargs) | |
return hook.post_forward(module, output) | |
self._module_ref.forward = functools.update_wrapper( | |
functools.partial(new_forward, self._module_ref), old_forward | |
) | |
self.hooks[name] = hook | |
self._hook_order.append(name) | |
def get_hook(self, name: str) -> Optional[ModelHook]: | |
if name not in self.hooks.keys(): | |
return None | |
return self.hooks[name] | |
def remove_hook(self, name: str) -> None: | |
if name not in self.hooks.keys(): | |
raise ValueError(f"Hook with name {name} not found.") | |
self.hooks[name].deinitalize_hook(self._module_ref) | |
del self.hooks[name] | |
self._hook_order.remove(name) | |
def reset_stateful_hooks(self, recurse: bool = True) -> None: | |
for hook_name in self._hook_order: | |
hook = self.hooks[hook_name] | |
if hook._is_stateful: | |
hook.reset_state(self._module_ref) | |
if recurse: | |
for module in self._module_ref.modules(): | |
if hasattr(module, "_diffusers_hook"): | |
module._diffusers_hook.reset_stateful_hooks(recurse=False) | |
def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry": | |
if not hasattr(module, "_diffusers_hook"): | |
module._diffusers_hook = cls(module) | |
return module._diffusers_hook | |
def __repr__(self) -> str: | |
hook_repr = "" | |
for i, hook_name in enumerate(self._hook_order): | |
hook_repr += f" ({i}) {hook_name} - ({self.hooks[hook_name].__class__.__name__})" | |
if i < len(self._hook_order) - 1: | |
hook_repr += "\n" | |
return f"HookRegistry(\n{hook_repr}\n)" | |