Spaces:
Runtime error
Runtime error
from typing import List, Optional, Union | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
def _get_t5_prompt_embeds( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: Union[str, List[str]], | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
text_input_ids=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if tokenizer is not None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
else: | |
if text_input_ids is None: | |
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.") | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
_, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
return prompt_embeds | |
def encode_prompt( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: Union[str, List[str]], | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
text_input_ids=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
prompt_embeds = _get_t5_prompt_embeds( | |
tokenizer, | |
text_encoder, | |
prompt=prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
text_input_ids=text_input_ids, | |
) | |
return prompt_embeds | |
def compute_prompt_embeddings( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: str, | |
max_sequence_length: int, | |
device: torch.device, | |
dtype: torch.dtype, | |
requires_grad: bool = False, | |
): | |
if requires_grad: | |
prompt_embeds = encode_prompt( | |
tokenizer, | |
text_encoder, | |
prompt, | |
num_videos_per_prompt=1, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
else: | |
with torch.no_grad(): | |
prompt_embeds = encode_prompt( | |
tokenizer, | |
text_encoder, | |
prompt, | |
num_videos_per_prompt=1, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
return prompt_embeds | |