VideoModelStudio / training /mochi-1 /dataset_simple.py
jbilcke-hf's picture
jbilcke-hf HF Staff
initial commit log 🪵🦫
91fb4ef
"""
Taken from
https://github.com/genmoai/mochi/blob/main/demos/fine_tuner/dataset.py
"""
from pathlib import Path
import click
import torch
from torch.utils.data import DataLoader, Dataset
def load_to_cpu(x):
return torch.load(x, map_location=torch.device("cpu"), weights_only=True)
class LatentEmbedDataset(Dataset):
def __init__(self, file_paths, repeat=1):
self.items = [
(Path(p).with_suffix(".latent.pt"), Path(p).with_suffix(".embed.pt"))
for p in file_paths
if Path(p).with_suffix(".latent.pt").is_file() and Path(p).with_suffix(".embed.pt").is_file()
]
self.items = self.items * repeat
print(f"Loaded {len(self.items)}/{len(file_paths)} valid file pairs.")
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
latent_path, embed_path = self.items[idx]
return load_to_cpu(latent_path), load_to_cpu(embed_path)
@click.command()
@click.argument("directory", type=click.Path(exists=True, file_okay=False))
def process_videos(directory):
dir_path = Path(directory)
mp4_files = [str(f) for f in dir_path.glob("**/*.mp4") if not f.name.endswith(".recon.mp4")]
assert mp4_files, f"No mp4 files found"
dataset = LatentEmbedDataset(mp4_files)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
for latents, embeds in dataloader:
print([(k, v.shape) for k, v in latents.items()])
if __name__ == "__main__":
process_videos()