import os from dataclasses import dataclass, field from typing import Dict, Any, Optional, List, Tuple from pathlib import Path from utils import parse_bool_env HF_API_TOKEN = os.getenv("HF_API_TOKEN") ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE")) # Base storage path STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data')) # Subdirectories for different data types VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split" # Raw uploaded/downloaded files STAGING_PATH = STORAGE_PATH / "staging" # This is where files that are captioned or need captioning are waiting TRAINING_PATH = STORAGE_PATH / "training" # Folder containing the final training dataset TRAINING_VIDEOS_PATH = TRAINING_PATH / "videos" # Captioned clips ready for training MODEL_PATH = STORAGE_PATH / "model" # Model checkpoints and files OUTPUT_PATH = STORAGE_PATH / "output" # Training outputs and logs LOG_FILE_PATH = OUTPUT_PATH / "last_session.log" # On the production server we can afford to preload the big model PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL')) CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2" DEFAULT_PROMPT_PREFIX = "In the style of TOK, " # This is only use to debug things in local USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL')) DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full description of the following video: camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings" # Create directories STORAGE_PATH.mkdir(parents=True, exist_ok=True) VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True) STAGING_PATH.mkdir(parents=True, exist_ok=True) TRAINING_PATH.mkdir(parents=True, exist_ok=True) TRAINING_VIDEOS_PATH.mkdir(parents=True, exist_ok=True) MODEL_PATH.mkdir(parents=True, exist_ok=True) OUTPUT_PATH.mkdir(parents=True, exist_ok=True) # Image normalization settings NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower() if NORMALIZE_IMAGES_TO not in ['png', 'jpg']: raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'") JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97')) MODEL_TYPES = { "HunyuanVideo (LoRA)": "hunyuan_video", "LTX-Video (LoRA)": "ltx_video" } # it is best to use resolutions that are powers of 8 # The resolution should be divisible by 32 # so we cannot use 1080, 540 etc as they are not divisible by 32 TRAINING_WIDTH = 768 # 32 * 24 TRAINING_HEIGHT = 512 # 32 * 16 # 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) # 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) # 1056 = 32 * 33 (divided by 2: 544 = 17 * 32) # 1024 = 32 * 32 (divided by 2: 512 = 16 * 32) # it is important that the resolution buckets properly cover the training dataset, # or else that we exclude from the dataset videos that are out of this range # right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here TRAINING_BUCKETS = [ (1, TRAINING_HEIGHT, TRAINING_WIDTH), # 1 (8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 8 + 1 (8 * 2 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 16 + 1 (8 * 4 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 32 + 1 (8 * 6 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 48 + 1 (8 * 8 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 64 + 1 (8 * 10 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 80 + 1 (8 * 12 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 96 + 1 (8 * 14 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 112 + 1 (8 * 16 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 128 + 1 (8 * 18 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 144 + 1 (8 * 20 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 160 + 1 (8 * 22 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 176 + 1 (8 * 24 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 192 + 1 (8 * 28 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 224 + 1 (8 * 32 + 1, TRAINING_HEIGHT, TRAINING_WIDTH), # 256 + 1 ] @dataclass class TrainingConfig: """Configuration class for finetrainers training""" # Required arguments must come first model_name: str pretrained_model_name_or_path: str data_root: str output_dir: str # Optional arguments follow revision: Optional[str] = None variant: Optional[str] = None cache_dir: Optional[str] = None # Dataset arguments # note: video_column and caption_column serve a dual purpose, # when using the CSV mode they have to be CSV column names, # otherwise they have to be filename (relative to the data_root dir path) video_column: str = "videos.txt" caption_column: str = "prompts.txt" id_token: Optional[str] = None video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: TRAINING_BUCKETS) video_reshape_mode: str = "center" caption_dropout_p: float = 0.05 caption_dropout_technique: str = "empty" precompute_conditions: bool = False # Diffusion arguments flow_resolution_shifting: bool = False flow_weighting_scheme: str = "none" flow_logit_mean: float = 0.0 flow_logit_std: float = 1.0 flow_mode_scale: float = 1.29 # Training arguments training_type: str = "lora" seed: int = 42 mixed_precision: str = "bf16" batch_size: int = 1 train_epochs: int = 70 lora_rank: int = 128 lora_alpha: int = 128 target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"]) gradient_accumulation_steps: int = 1 gradient_checkpointing: bool = True checkpointing_steps: int = 500 checkpointing_limit: Optional[int] = 2 resume_from_checkpoint: Optional[str] = None enable_slicing: bool = True enable_tiling: bool = True # Optimizer arguments optimizer: str = "adamw" lr: float = 3e-5 scale_lr: bool = False lr_scheduler: str = "constant_with_warmup" lr_warmup_steps: int = 100 lr_num_cycles: int = 1 lr_power: float = 1.0 beta1: float = 0.9 beta2: float = 0.95 weight_decay: float = 1e-4 epsilon: float = 1e-8 max_grad_norm: float = 1.0 # Miscellaneous arguments tracker_name: str = "finetrainers" report_to: str = "wandb" nccl_timeout: int = 1800 @classmethod def hunyuan_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig': """Configuration for Hunyuan video-to-video LoRA training""" return cls( model_name="hunyuan_video", pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo", data_root=data_path, output_dir=output_path, batch_size=1, train_epochs=70, lr=2e-5, gradient_checkpointing=True, id_token="afkx", gradient_accumulation_steps=1, lora_rank=128, lora_alpha=128, video_resolution_buckets=TRAINING_BUCKETS, caption_dropout_p=0.05, flow_weighting_scheme="none" # Hunyuan specific ) @classmethod def ltx_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig': """Configuration for LTX-Video LoRA training""" return cls( model_name="ltx_video", pretrained_model_name_or_path="Lightricks/LTX-Video", data_root=data_path, output_dir=output_path, batch_size=1, train_epochs=70, lr=3e-5, gradient_checkpointing=True, id_token="BW_STYLE", gradient_accumulation_steps=4, lora_rank=128, lora_alpha=128, video_resolution_buckets=TRAINING_BUCKETS, caption_dropout_p=0.05, flow_weighting_scheme="logit_normal" # LTX specific ) def to_args_list(self) -> List[str]: """Convert config to command line arguments list""" args = [] # Model arguments # Add model_name (required argument) args.extend(["--model_name", self.model_name]) args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path]) if self.revision: args.extend(["--revision", self.revision]) if self.variant: args.extend(["--variant", self.variant]) if self.cache_dir: args.extend(["--cache_dir", self.cache_dir]) # Dataset arguments args.extend(["--data_root", self.data_root]) args.extend(["--video_column", self.video_column]) args.extend(["--caption_column", self.caption_column]) if self.id_token: args.extend(["--id_token", self.id_token]) # Add video resolution buckets if self.video_resolution_buckets: bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets] args.extend(["--video_resolution_buckets"] + bucket_strs) if self.video_reshape_mode: args.extend(["--video_reshape_mode", self.video_reshape_mode]) args.extend(["--caption_dropout_p", str(self.caption_dropout_p)]) args.extend(["--caption_dropout_technique", self.caption_dropout_technique]) if self.precompute_conditions: args.append("--precompute_conditions") # Diffusion arguments if self.flow_resolution_shifting: args.append("--flow_resolution_shifting") args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme]) args.extend(["--flow_logit_mean", str(self.flow_logit_mean)]) args.extend(["--flow_logit_std", str(self.flow_logit_std)]) args.extend(["--flow_mode_scale", str(self.flow_mode_scale)]) # Training arguments args.extend(["--training_type", self.training_type]) args.extend(["--seed", str(self.seed)]) # we don't use this, because mixed precision is handled by accelerate launch, not by the training script itself. #args.extend(["--mixed_precision", self.mixed_precision]) args.extend(["--batch_size", str(self.batch_size)]) args.extend(["--train_epochs", str(self.train_epochs)]) args.extend(["--rank", str(self.lora_rank)]) args.extend(["--lora_alpha", str(self.lora_alpha)]) args.extend(["--target_modules"] + self.target_modules) args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)]) if self.gradient_checkpointing: args.append("--gradient_checkpointing") args.extend(["--checkpointing_steps", str(self.checkpointing_steps)]) if self.checkpointing_limit: args.extend(["--checkpointing_limit", str(self.checkpointing_limit)]) if self.resume_from_checkpoint: args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint]) if self.enable_slicing: args.append("--enable_slicing") if self.enable_tiling: args.append("--enable_tiling") # Optimizer arguments args.extend(["--optimizer", self.optimizer]) args.extend(["--lr", str(self.lr)]) if self.scale_lr: args.append("--scale_lr") args.extend(["--lr_scheduler", self.lr_scheduler]) args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)]) args.extend(["--lr_num_cycles", str(self.lr_num_cycles)]) args.extend(["--lr_power", str(self.lr_power)]) args.extend(["--beta1", str(self.beta1)]) args.extend(["--beta2", str(self.beta2)]) args.extend(["--weight_decay", str(self.weight_decay)]) args.extend(["--epsilon", str(self.epsilon)]) args.extend(["--max_grad_norm", str(self.max_grad_norm)]) # Miscellaneous arguments args.extend(["--tracker_name", self.tracker_name]) args.extend(["--output_dir", self.output_dir]) args.extend(["--report_to", self.report_to]) args.extend(["--nccl_timeout", str(self.nccl_timeout)]) # normally this is disabled by default, but there was a bug in finetrainers # so I had to fix it in trainer.py to make sure we check for push_to-hub #args.append("--push_to_hub") #args.extend(["--hub_token", str(False)]) #args.extend(["--hub_model_id", str(False)]) # If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like # "In this video, ...", "This video features ...", etc. # To remove a simple subset of these phrases, you can specify # --remove_common_llm_caption_prefixes when starting training. args.append("--remove_common_llm_caption_prefixes") return args