# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import Optional, Tuple, Type import torch from accelerate.logging import get_logger from ..constants import FINETRAINERS_LOG_LEVEL from .hooks import HookRegistry, ModelHook logger = get_logger("finetrainers") # pylint: disable=invalid-name logger.setLevel(FINETRAINERS_LOG_LEVEL) # fmt: off _SUPPORTED_PYTORCH_LAYERS = ( torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d, torch.nn.Linear, ) _DEFAULT_SKIP_MODULES_PATTERN = ("pos_embed", "patch_embed", "norm") # fmt: on class LayerwiseUpcastingHook(ModelHook): r""" A hook that casts the weights of a module to a high precision dtype for computation, and to a low precision dtype for storage. This process may lead to quality loss in the output, but can significantly reduce the memory footprint. """ _is_stateful = False def __init__(self, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool) -> None: self.storage_dtype = storage_dtype self.compute_dtype = compute_dtype self.non_blocking = non_blocking def initialize_hook(self, module: torch.nn.Module): module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) return module def pre_forward(self, module: torch.nn.Module, *args, **kwargs): module.to(dtype=self.compute_dtype, non_blocking=self.non_blocking) return args, kwargs def post_forward(self, module: torch.nn.Module, output): module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) return output def apply_layerwise_upcasting( module: torch.nn.Module, storage_dtype: torch.dtype, compute_dtype: torch.dtype, skip_modules_pattern: Optional[Tuple[str]] = _DEFAULT_SKIP_MODULES_PATTERN, skip_modules_classes: Optional[Tuple[Type[torch.nn.Module]]] = None, non_blocking: bool = False, _prefix: str = "", ) -> None: r""" Applies layerwise upcasting to a given module. The module expected here is a Diffusers ModelMixin but it can be any nn.Module using diffusers layers or pytorch primitives. Args: module (`torch.nn.Module`): The module whose leaf modules will be cast to a high precision dtype for computation, and to a low precision dtype for storage. storage_dtype (`torch.dtype`): The dtype to cast the module to before/after the forward pass for storage. compute_dtype (`torch.dtype`): The dtype to cast the module to during the forward pass for computation. skip_modules_pattern (`Tuple[str]`, defaults to `["pos_embed", "patch_embed", "norm"]`): A list of patterns to match the names of the modules to skip during the layerwise upcasting process. skip_modules_classes (`Tuple[Type[torch.nn.Module]]`, defaults to `None`): A list of module classes to skip during the layerwise upcasting process. non_blocking (`bool`, defaults to `False`): If `True`, the weight casting operations are non-blocking. """ if skip_modules_classes is None and skip_modules_pattern is None: apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking) return should_skip = (skip_modules_classes is not None and isinstance(module, skip_modules_classes)) or ( skip_modules_pattern is not None and any(re.search(pattern, _prefix) for pattern in skip_modules_pattern) ) if should_skip: logger.debug(f'Skipping layerwise upcasting for layer "{_prefix}"') return if isinstance(module, _SUPPORTED_PYTORCH_LAYERS): logger.debug(f'Applying layerwise upcasting to layer "{_prefix}"') apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking) return for name, submodule in module.named_children(): layer_name = f"{_prefix}.{name}" if _prefix else name apply_layerwise_upcasting( submodule, storage_dtype, compute_dtype, skip_modules_pattern, skip_modules_classes, non_blocking, _prefix=layer_name, ) def apply_layerwise_upcasting_hook( module: torch.nn.Module, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool ) -> None: r""" Applies a `LayerwiseUpcastingHook` to a given module. Args: module (`torch.nn.Module`): The module to attach the hook to. storage_dtype (`torch.dtype`): The dtype to cast the module to before the forward pass. compute_dtype (`torch.dtype`): The dtype to cast the module to during the forward pass. non_blocking (`bool`): If `True`, the weight casting operations are non-blocking. """ registry = HookRegistry.check_if_exists_or_initialize(module) hook = LayerwiseUpcastingHook(storage_dtype, compute_dtype, non_blocking) registry.register_hook(hook, "layerwise_upcasting")