from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from accelerate.logging import get_logger from diffusers import ( AutoencoderKLHunyuanVideo, FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel, ) from PIL import Image from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizer logger = get_logger("finetrainers") # pylint: disable=invalid-name def load_condition_models( model_id: str = "hunyuanvideo-community/HunyuanVideo", text_encoder_dtype: torch.dtype = torch.float16, text_encoder_2_dtype: torch.dtype = torch.float16, revision: Optional[str] = None, cache_dir: Optional[str] = None, **kwargs, ) -> Dict[str, nn.Module]: tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir) text_encoder = LlamaModel.from_pretrained( model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir ) tokenizer_2 = CLIPTokenizer.from_pretrained( model_id, subfolder="tokenizer_2", revision=revision, cache_dir=cache_dir ) text_encoder_2 = CLIPTextModel.from_pretrained( model_id, subfolder="text_encoder_2", torch_dtype=text_encoder_2_dtype, revision=revision, cache_dir=cache_dir ) return { "tokenizer": tokenizer, "text_encoder": text_encoder, "tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2, } def load_latent_models( model_id: str = "hunyuanvideo-community/HunyuanVideo", vae_dtype: torch.dtype = torch.float16, revision: Optional[str] = None, cache_dir: Optional[str] = None, **kwargs, ) -> Dict[str, nn.Module]: vae = AutoencoderKLHunyuanVideo.from_pretrained( model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir ) return {"vae": vae} def load_diffusion_models( model_id: str = "hunyuanvideo-community/HunyuanVideo", transformer_dtype: torch.dtype = torch.bfloat16, shift: float = 1.0, revision: Optional[str] = None, cache_dir: Optional[str] = None, **kwargs, ) -> Dict[str, Union[nn.Module, FlowMatchEulerDiscreteScheduler]]: transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir ) scheduler = FlowMatchEulerDiscreteScheduler(shift=shift) return {"transformer": transformer, "scheduler": scheduler} def initialize_pipeline( model_id: str = "hunyuanvideo-community/HunyuanVideo", text_encoder_dtype: torch.dtype = torch.float16, text_encoder_2_dtype: torch.dtype = torch.float16, transformer_dtype: torch.dtype = torch.bfloat16, vae_dtype: torch.dtype = torch.float16, tokenizer: Optional[LlamaTokenizer] = None, text_encoder: Optional[LlamaModel] = None, tokenizer_2: Optional[CLIPTokenizer] = None, text_encoder_2: Optional[CLIPTextModel] = None, transformer: Optional[HunyuanVideoTransformer3DModel] = None, vae: Optional[AutoencoderKLHunyuanVideo] = None, scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None, device: Optional[torch.device] = None, revision: Optional[str] = None, cache_dir: Optional[str] = None, enable_slicing: bool = False, enable_tiling: bool = False, enable_model_cpu_offload: bool = False, is_training: bool = False, **kwargs, ) -> HunyuanVideoPipeline: component_name_pairs = [ ("tokenizer", tokenizer), ("text_encoder", text_encoder), ("tokenizer_2", tokenizer_2), ("text_encoder_2", text_encoder_2), ("transformer", transformer), ("vae", vae), ("scheduler", scheduler), ] components = {} for name, component in component_name_pairs: if component is not None: components[name] = component pipe = HunyuanVideoPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir) pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype) pipe.text_encoder_2 = pipe.text_encoder_2.to(dtype=text_encoder_2_dtype) pipe.vae = pipe.vae.to(dtype=vae_dtype) # The transformer should already be in the correct dtype when training, so we don't need to cast it here. # If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during # DDP optimizer step. if not is_training: pipe.transformer = pipe.transformer.to(dtype=transformer_dtype) if enable_slicing: pipe.vae.enable_slicing() if enable_tiling: pipe.vae.enable_tiling() if enable_model_cpu_offload: pipe.enable_model_cpu_offload(device=device) else: pipe.to(device=device) return pipe def prepare_conditions( tokenizer: LlamaTokenizer, text_encoder: LlamaModel, tokenizer_2: CLIPTokenizer, text_encoder_2: CLIPTextModel, prompt: Union[str, List[str]], guidance: float = 1.0, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, max_sequence_length: int = 256, # TODO(aryan): make configurable prompt_template: Dict[str, Any] = { "template": ( "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " "1. The main content and theme of the video." "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." "4. background environment, light, style and atmosphere." "5. camera angles, movements, and transitions used in the video:<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" ), "crop_start": 95, }, **kwargs, ) -> torch.Tensor: device = device or text_encoder.device dtype = dtype or text_encoder.dtype if isinstance(prompt, str): prompt = [prompt] conditions = {} conditions.update( _get_llama_prompt_embeds(tokenizer, text_encoder, prompt, prompt_template, device, dtype, max_sequence_length) ) conditions.update(_get_clip_prompt_embeds(tokenizer_2, text_encoder_2, prompt, device, dtype)) guidance = torch.tensor([guidance], device=device, dtype=dtype) * 1000.0 conditions["guidance"] = guidance return conditions def prepare_latents( vae: AutoencoderKLHunyuanVideo, image_or_video: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, generator: Optional[torch.Generator] = None, precompute: bool = False, **kwargs, ) -> torch.Tensor: device = device or vae.device dtype = dtype or vae.dtype if image_or_video.ndim == 4: image_or_video = image_or_video.unsqueeze(2) assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor" image_or_video = image_or_video.to(device=device, dtype=vae.dtype) image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, C, F, H, W] -> [B, F, C, H, W] if not precompute: latents = vae.encode(image_or_video).latent_dist.sample(generator=generator) latents = latents * vae.config.scaling_factor latents = latents.to(dtype=dtype) return {"latents": latents} else: if vae.use_slicing and image_or_video.shape[0] > 1: encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)] h = torch.cat(encoded_slices) else: h = vae._encode(image_or_video) return {"latents": h} def post_latent_preparation( vae_config: Dict[str, Any], latents: torch.Tensor, **kwargs, ) -> torch.Tensor: latents = latents * vae_config.scaling_factor return {"latents": latents} def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]: return { "prompts": [x["prompt"] for x in batch[0]], "videos": torch.stack([x["video"] for x in batch[0]]), } def forward_pass( transformer: HunyuanVideoTransformer3DModel, prompt_embeds: torch.Tensor, pooled_prompt_embeds: torch.Tensor, prompt_attention_mask: torch.Tensor, guidance: torch.Tensor, latents: torch.Tensor, noisy_latents: torch.Tensor, timesteps: torch.LongTensor, **kwargs, ) -> torch.Tensor: denoised_latents = transformer( hidden_states=noisy_latents, timestep=timesteps, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, encoder_attention_mask=prompt_attention_mask, guidance=guidance, return_dict=False, )[0] return {"latents": denoised_latents} def validation( pipeline: HunyuanVideoPipeline, prompt: str, image: Optional[Image.Image] = None, video: Optional[List[Image.Image]] = None, height: Optional[int] = None, width: Optional[int] = None, num_frames: Optional[int] = None, num_videos_per_prompt: int = 1, generator: Optional[torch.Generator] = None, **kwargs, ): generation_kwargs = { "prompt": prompt, "height": height, "width": width, "num_frames": num_frames, "num_inference_steps": 30, "num_videos_per_prompt": num_videos_per_prompt, "generator": generator, "return_dict": True, "output_type": "pil", } generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None} output = pipeline(**generation_kwargs).frames[0] return [("video", output)] def _get_llama_prompt_embeds( tokenizer: LlamaTokenizer, text_encoder: LlamaModel, prompt: List[str], prompt_template: Dict[str, Any], device: torch.device, dtype: torch.dtype, max_sequence_length: int = 256, num_hidden_layers_to_skip: int = 2, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = len(prompt) prompt = [prompt_template["template"].format(p) for p in prompt] crop_start = prompt_template.get("crop_start", None) if crop_start is None: prompt_template_input = tokenizer( prompt_template["template"], padding="max_length", return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=False, ) crop_start = prompt_template_input["input_ids"].shape[-1] # Remove <|eot_id|> token and placeholder {} crop_start -= 2 max_sequence_length += crop_start text_inputs = tokenizer( prompt, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=True, ) text_input_ids = text_inputs.input_ids.to(device=device) prompt_attention_mask = text_inputs.attention_mask.to(device=device) prompt_embeds = text_encoder( input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True, ).hidden_states[-(num_hidden_layers_to_skip + 1)] prompt_embeds = prompt_embeds.to(dtype=dtype) if crop_start is not None and crop_start > 0: prompt_embeds = prompt_embeds[:, crop_start:] prompt_attention_mask = prompt_attention_mask[:, crop_start:] prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) return {"prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask} def _get_clip_prompt_embeds( tokenizer_2: CLIPTokenizer, text_encoder_2: CLIPTextModel, prompt: Union[str, List[str]], device: torch.device, dtype: torch.dtype, max_sequence_length: int = 77, ) -> torch.Tensor: text_inputs = tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt", ) prompt_embeds = text_encoder_2(text_inputs.input_ids.to(device), output_hidden_states=False).pooler_output prompt_embeds = prompt_embeds.to(dtype=dtype) return {"pooled_prompt_embeds": prompt_embeds} # TODO(aryan): refactor into model specs for better re-use HUNYUAN_VIDEO_T2V_LORA_CONFIG = { "pipeline_cls": HunyuanVideoPipeline, "load_condition_models": load_condition_models, "load_latent_models": load_latent_models, "load_diffusion_models": load_diffusion_models, "initialize_pipeline": initialize_pipeline, "prepare_conditions": prepare_conditions, "prepare_latents": prepare_latents, "post_latent_preparation": post_latent_preparation, "collate_fn": collate_fn_t2v, "forward_pass": forward_pass, "validation": validation, }