import random from pathlib import Path from typing import Any, Dict, List, Optional, Tuple import numpy as np import pandas as pd import torch import torchvision.transforms as TT from accelerate.logging import get_logger from torch.utils.data import Dataset, Sampler from torchvision import transforms from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import resize # Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error # Very few bug reports but it happens. Look in decord Github issues for more relevant information. import decord # isort:skip decord.bridge.set_bridge("torch") logger = get_logger(__name__) HEIGHT_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536] WIDTH_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536] FRAME_BUCKETS = [16, 24, 32, 48, 64, 80] class VideoDataset(Dataset): def __init__( self, data_root: str, dataset_file: Optional[str] = None, caption_column: str = "text", video_column: str = "video", max_num_frames: int = 49, id_token: Optional[str] = None, height_buckets: List[int] = None, width_buckets: List[int] = None, frame_buckets: List[int] = None, load_tensors: bool = False, random_flip: Optional[float] = None, image_to_video: bool = False, ) -> None: super().__init__() self.data_root = Path(data_root) self.dataset_file = dataset_file self.caption_column = caption_column self.video_column = video_column self.max_num_frames = max_num_frames self.id_token = f"{id_token.strip()} " if id_token else "" self.height_buckets = height_buckets or HEIGHT_BUCKETS self.width_buckets = width_buckets or WIDTH_BUCKETS self.frame_buckets = frame_buckets or FRAME_BUCKETS self.load_tensors = load_tensors self.random_flip = random_flip self.image_to_video = image_to_video self.resolutions = [ (f, h, w) for h in self.height_buckets for w in self.width_buckets for f in self.frame_buckets ] # Two methods of loading data are supported. # - Using a CSV: caption_column and video_column must be some column in the CSV. One could # make use of other columns too, such as a motion score or aesthetic score, by modifying the # logic in CSV processing. # - Using two files containing line-separate captions and relative paths to videos. # For a more detailed explanation about preparing dataset format, checkout the README. if dataset_file is None: ( self.prompts, self.video_paths, ) = self._load_dataset_from_local_path() else: ( self.prompts, self.video_paths, ) = self._load_dataset_from_csv() if len(self.video_paths) != len(self.prompts): raise ValueError( f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset." ) self.video_transforms = transforms.Compose( [ transforms.RandomHorizontalFlip(random_flip) if random_flip else transforms.Lambda(self.identity_transform), transforms.Lambda(self.scale_transform), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) @staticmethod def identity_transform(x): return x @staticmethod def scale_transform(x): return x / 255.0 def __len__(self) -> int: return len(self.video_paths) def __getitem__(self, index: int) -> Dict[str, Any]: if isinstance(index, list): # Here, index is actually a list of data objects that we need to return. # The BucketSampler should ideally return indices. But, in the sampler, we'd like # to have information about num_frames, height and width. Since this is not stored # as metadata, we need to read the video to get this information. You could read this # information without loading the full video in memory, but we do it anyway. In order # to not load the video twice (once to get the metadata, and once to return the loaded video # based on sampled indices), we cache it in the BucketSampler. When the sampler is # to yield, we yield the cache data instead of indices. So, this special check ensures # that data is not loaded a second time. PRs are welcome for improvements. return index if self.load_tensors: image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index]) # This is hardcoded for now. # The VAE's temporal compression ratio is 4. # The VAE's spatial compression ratio is 8. latent_num_frames = video_latents.size(1) if latent_num_frames % 2 == 0: num_frames = latent_num_frames * 4 else: num_frames = (latent_num_frames - 1) * 4 + 1 height = video_latents.size(2) * 8 width = video_latents.size(3) * 8 return { "prompt": prompt_embeds, "image": image_latents, "video": video_latents, "video_metadata": { "num_frames": num_frames, "height": height, "width": width, }, } else: image, video, _ = self._preprocess_video(self.video_paths[index]) return { "prompt": self.id_token + self.prompts[index], "image": image, "video": video, "video_metadata": { "num_frames": video.shape[0], "height": video.shape[2], "width": video.shape[3], }, } def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str]]: if not self.data_root.exists(): raise ValueError("Root folder for videos does not exist") prompt_path = self.data_root.joinpath(self.caption_column) video_path = self.data_root.joinpath(self.video_column) if not prompt_path.exists() or not prompt_path.is_file(): raise ValueError( "Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts." ) if not video_path.exists() or not video_path.is_file(): raise ValueError( "Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory." ) with open(prompt_path, "r", encoding="utf-8") as file: prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0] with open(video_path, "r", encoding="utf-8") as file: video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0] if not self.load_tensors and any(not path.is_file() for path in video_paths): raise ValueError( f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file." ) return prompts, video_paths def _load_dataset_from_csv(self) -> Tuple[List[str], List[str]]: df = pd.read_csv(self.dataset_file) prompts = df[self.caption_column].tolist() video_paths = df[self.video_column].tolist() video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths] if any(not path.is_file() for path in video_paths): raise ValueError( f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file." ) return prompts, video_paths def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: r""" Loads a single video, or latent and prompt embedding, based on initialization parameters. If returning a video, returns a [F, C, H, W] video tensor, and None for the prompt embedding. Here, F, C, H and W are the frames, channels, height and width of the input video. If returning latent/embedding, returns a [F, C, H, W] latent, and the prompt embedding of shape [S, D]. F, C, H and W are the frames, channels, height and width of the latent, and S, D are the sequence length and embedding dimension of prompt embeddings. """ if self.load_tensors: return self._load_preprocessed_latents_and_embeds(path) else: video_reader = decord.VideoReader(uri=path.as_posix()) video_num_frames = len(video_reader) indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames)) frames = video_reader.get_batch(indices) frames = frames[: self.max_num_frames].float() frames = frames.permute(0, 3, 1, 2).contiguous() frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0) image = frames[:1].clone() if self.image_to_video else None return image, frames, None def _load_preprocessed_latents_and_embeds(self, path: Path) -> Tuple[torch.Tensor, torch.Tensor]: filename_without_ext = path.name.split(".")[0] pt_filename = f"{filename_without_ext}.pt" # The current path is something like: /a/b/c/d/videos/00001.mp4 # We need to reach: /a/b/c/d/video_latents/00001.pt image_latents_path = path.parent.parent.joinpath("image_latents") video_latents_path = path.parent.parent.joinpath("video_latents") embeds_path = path.parent.parent.joinpath("prompt_embeds") if ( not video_latents_path.exists() or not embeds_path.exists() or (self.image_to_video and not image_latents_path.exists()) ): raise ValueError( f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains two folders named `video_latents` and `prompt_embeds`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present." ) if self.image_to_video: image_latent_filepath = image_latents_path.joinpath(pt_filename) video_latent_filepath = video_latents_path.joinpath(pt_filename) embeds_filepath = embeds_path.joinpath(pt_filename) if not video_latent_filepath.is_file() or not embeds_filepath.is_file(): if self.image_to_video: image_latent_filepath = image_latent_filepath.as_posix() video_latent_filepath = video_latent_filepath.as_posix() embeds_filepath = embeds_filepath.as_posix() raise ValueError( f"The file {video_latent_filepath=} or {embeds_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`." ) images = ( torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None ) latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True) embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True) return images, latents, embeds class VideoDatasetWithResizing(VideoDataset): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def _preprocess_video(self, path: Path) -> torch.Tensor: if self.load_tensors: return self._load_preprocessed_latents_and_embeds(path) else: video_reader = decord.VideoReader(uri=path.as_posix()) video_num_frames = len(video_reader) nearest_frame_bucket = min( self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames)) ) frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket)) frames = video_reader.get_batch(frame_indices) frames = frames[:nearest_frame_bucket].float() frames = frames.permute(0, 3, 1, 2).contiguous() nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3]) frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0) frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0) image = frames[:1].clone() if self.image_to_video else None return image, frames, None def _find_nearest_resolution(self, height, width): nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width)) return nearest_res[1], nearest_res[2] class VideoDatasetWithResizeAndRectangleCrop(VideoDataset): def __init__(self, video_reshape_mode: str = "center", *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.video_reshape_mode = video_reshape_mode def _resize_for_rectangle_crop(self, arr, image_size): reshape_mode = self.video_reshape_mode if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]: arr = resize( arr, size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])], interpolation=InterpolationMode.BICUBIC, ) else: arr = resize( arr, size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]], interpolation=InterpolationMode.BICUBIC, ) h, w = arr.shape[2], arr.shape[3] arr = arr.squeeze(0) delta_h = h - image_size[0] delta_w = w - image_size[1] if reshape_mode == "random" or reshape_mode == "none": top = np.random.randint(0, delta_h + 1) left = np.random.randint(0, delta_w + 1) elif reshape_mode == "center": top, left = delta_h // 2, delta_w // 2 else: raise NotImplementedError arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1]) return arr def _preprocess_video(self, path: Path) -> torch.Tensor: if self.load_tensors: return self._load_preprocessed_latents_and_embeds(path) else: video_reader = decord.VideoReader(uri=path.as_posix()) video_num_frames = len(video_reader) nearest_frame_bucket = min( self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames)) ) frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket)) frames = video_reader.get_batch(frame_indices) frames = frames[:nearest_frame_bucket].float() frames = frames.permute(0, 3, 1, 2).contiguous() nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3]) frames_resized = self._resize_for_rectangle_crop(frames, nearest_res) frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0) image = frames[:1].clone() if self.image_to_video else None return image, frames, None def _find_nearest_resolution(self, height, width): nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width)) return nearest_res[1], nearest_res[2] class BucketSampler(Sampler): r""" PyTorch Sampler that groups 3D data by height, width and frames. Args: data_source (`VideoDataset`): A PyTorch dataset object that is an instance of `VideoDataset`. batch_size (`int`, defaults to `8`): The batch size to use for training. shuffle (`bool`, defaults to `True`): Whether or not to shuffle the data in each batch before dispatching to dataloader. drop_last (`bool`, defaults to `False`): Whether or not to drop incomplete buckets of data after completely iterating over all data in the dataset. If set to True, only batches that have `batch_size` number of entries will be yielded. If set to False, it is guaranteed that all data in the dataset will be processed and batches that do not have `batch_size` number of entries will also be yielded. """ def __init__( self, data_source: VideoDataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False ) -> None: self.data_source = data_source self.batch_size = batch_size self.shuffle = shuffle self.drop_last = drop_last self.buckets = {resolution: [] for resolution in data_source.resolutions} self._raised_warning_for_drop_last = False def __len__(self): if self.drop_last and not self._raised_warning_for_drop_last: self._raised_warning_for_drop_last = True logger.warning( "Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training." ) return (len(self.data_source) + self.batch_size - 1) // self.batch_size def __iter__(self): for index, data in enumerate(self.data_source): video_metadata = data["video_metadata"] f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"] self.buckets[(f, h, w)].append(data) if len(self.buckets[(f, h, w)]) == self.batch_size: if self.shuffle: random.shuffle(self.buckets[(f, h, w)]) yield self.buckets[(f, h, w)] del self.buckets[(f, h, w)] self.buckets[(f, h, w)] = [] if self.drop_last: return for fhw, bucket in list(self.buckets.items()): if len(bucket) == 0: continue if self.shuffle: random.shuffle(bucket) yield bucket del self.buckets[fhw] self.buckets[fhw] = []