Spaces:
Sleeping
Sleeping
File size: 4,635 Bytes
4c88343 57c1094 4c88343 57c1094 4c88343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import argparse
import collections.abc as collections
from pathlib import Path
from typing import Optional
import h5py
import numpy as np
import torch
from . import logger
from .utils.io import list_h5_names
from .utils.parsers import parse_image_lists
from .utils.read_write_model import read_images_binary
def parse_names(prefix, names, names_all):
if prefix is not None:
if not isinstance(prefix, str):
prefix = tuple(prefix)
names = [n for n in names_all if n.startswith(prefix)]
if len(names) == 0:
raise ValueError(
f"Could not find any image with the prefix `{prefix}`."
)
elif names is not None:
if isinstance(names, (str, Path)):
names = parse_image_lists(names)
elif isinstance(names, collections.Iterable):
names = list(names)
else:
raise ValueError(
f"Unknown type of image list: {names}."
"Provide either a list or a path to a list file."
)
else:
names = names_all
return names
def get_descriptors(names, path, name2idx=None, key="global_descriptor"):
if name2idx is None:
with h5py.File(str(path), "r", libver="latest") as fd:
desc = [fd[n][key].__array__() for n in names]
else:
desc = []
for n in names:
with h5py.File(str(path[name2idx[n]]), "r", libver="latest") as fd:
desc.append(fd[n][key].__array__())
return torch.from_numpy(np.stack(desc, 0)).float()
def pairs_from_score_matrix(
scores: torch.Tensor,
invalid: np.array,
num_select: int,
min_score: Optional[float] = None,
):
assert scores.shape == invalid.shape
if isinstance(scores, np.ndarray):
scores = torch.from_numpy(scores)
invalid = torch.from_numpy(invalid).to(scores.device)
if min_score is not None:
invalid |= scores < min_score
scores.masked_fill_(invalid, float("-inf"))
topk = torch.topk(scores, num_select, dim=1)
indices = topk.indices.cpu().numpy()
valid = topk.values.isfinite().cpu().numpy()
pairs = []
for i, j in zip(*np.where(valid)):
pairs.append((i, indices[i, j]))
return pairs
def main(
descriptors,
output,
num_matched,
query_prefix=None,
query_list=None,
db_prefix=None,
db_list=None,
db_model=None,
db_descriptors=None,
):
logger.info("Extracting image pairs from a retrieval database.")
# We handle multiple reference feature files.
# We only assume that names are unique among them and map names to files.
if db_descriptors is None:
db_descriptors = descriptors
if isinstance(db_descriptors, (Path, str)):
db_descriptors = [db_descriptors]
name2db = {
n: i for i, p in enumerate(db_descriptors) for n in list_h5_names(p)
}
db_names_h5 = list(name2db.keys())
query_names_h5 = list_h5_names(descriptors)
if db_model:
images = read_images_binary(db_model / "images.bin")
db_names = [i.name for i in images.values()]
else:
db_names = parse_names(db_prefix, db_list, db_names_h5)
if len(db_names) == 0:
raise ValueError("Could not find any database image.")
query_names = parse_names(query_prefix, query_list, query_names_h5)
device = "cuda" if torch.cuda.is_available() else "cpu"
db_desc = get_descriptors(db_names, db_descriptors, name2db)
query_desc = get_descriptors(query_names, descriptors)
sim = torch.einsum("id,jd->ij", query_desc.to(device), db_desc.to(device))
# Avoid self-matching
self = np.array(query_names)[:, None] == np.array(db_names)[None]
pairs = pairs_from_score_matrix(sim, self, num_matched, min_score=0)
pairs = [(query_names[i], db_names[j]) for i, j in pairs]
logger.info(f"Found {len(pairs)} pairs.")
with open(output, "w") as f:
f.write("\n".join(" ".join([i, j]) for i, j in pairs))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--descriptors", type=Path, required=True)
parser.add_argument("--output", type=Path, required=True)
parser.add_argument("--num_matched", type=int, required=True)
parser.add_argument("--query_prefix", type=str, nargs="+")
parser.add_argument("--query_list", type=Path)
parser.add_argument("--db_prefix", type=str, nargs="+")
parser.add_argument("--db_list", type=Path)
parser.add_argument("--db_model", type=Path)
parser.add_argument("--db_descriptors", type=Path)
args = parser.parse_args()
main(**args.__dict__)
|