Spaces:
Sleeping
Sleeping
File size: 19,527 Bytes
7acaad7 5069bec 7acaad7 4a7fc02 7acaad7 b5957bd 7acaad7 7419d98 7acaad7 7419d98 7acaad7 4a7fc02 7acaad7 3c77caa 7acaad7 4a7fc02 7acaad7 3c77caa 7acaad7 4a7fc02 7acaad7 772e4c0 7acaad7 2d36d99 7acaad7 4a7fc02 7acaad7 4a7fc02 7acaad7 3c77caa 7acaad7 b5957bd 7acaad7 4a7fc02 d21720c 10dcc2e 4a7fc02 10dcc2e 4a7fc02 7acaad7 3c77caa 5069bec 7acaad7 3c77caa 7acaad7 2d36d99 6ae8c1a 2d36d99 10dcc2e 2d36d99 3c77caa 2d36d99 3c77caa 2d36d99 b5957bd 2d36d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List, Union
from common.utils import (
ransac_zoo,
generate_warp_images,
load_config,
get_matcher_zoo,
run_matching,
run_ransac,
gen_examples,
GRADIO_VERSION,
)
DESCRIPTION = """
# Image Matching WebUI
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!
<br/>
🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui
🚀 All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment.
🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues).
"""
class ImageMatchingApp:
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs):
self.server_name = server_name
self.server_port = server_port
self.config_path = kwargs.get(
"config", Path(__file__).parent / "config.yaml"
)
self.cfg = load_config(self.config_path)
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"])
self.app = None
self.init_interface()
# print all the keys
def init_matcher_dropdown(self):
algos = []
for k, v in self.cfg["matcher_zoo"].items():
if v.get("enable", True):
algos.append(k)
return algos
def init_interface(self):
with gr.Blocks() as self.app:
with gr.Row():
with gr.Column(scale=1):
gr.Image(
str(Path(__file__).parent.parent / "assets/logo.webp"),
elem_id="logo-img",
show_label=False,
show_share_button=False,
show_download_button=False,
)
with gr.Column(scale=3):
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
matcher_list = gr.Dropdown(
choices=self.init_matcher_dropdown(),
value="disk+lightglue",
label="Matching Model",
interactive=True,
)
match_image_src = gr.Radio(
(
["upload", "webcam", "clipboard"]
if GRADIO_VERSION > "3"
else ["upload", "webcam", "canvas"]
),
label="Image Source",
value="upload",
)
with gr.Row():
input_image0 = gr.Image(
label="Image 0",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
input_image1 = gr.Image(
label="Image 1",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
with gr.Row():
button_reset = gr.Button(value="Reset")
button_run = gr.Button(
value="Run Match", variant="primary"
)
with gr.Accordion("Advanced Setting", open=False):
with gr.Accordion("Matching Setting", open=True):
with gr.Row():
match_setting_threshold = gr.Slider(
minimum=0.0,
maximum=1,
step=0.001,
label="Match thres.",
value=0.1,
)
match_setting_max_features = gr.Slider(
minimum=10,
maximum=10000,
step=10,
label="Max features",
value=1000,
)
# TODO: add line settings
with gr.Row():
detect_keypoints_threshold = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
label="Keypoint thres.",
value=0.015,
)
detect_line_threshold = gr.Slider(
minimum=0.1,
maximum=1,
step=0.01,
label="Line thres.",
value=0.2,
)
# matcher_lists = gr.Radio(
# ["NN-mutual", "Dual-Softmax"],
# label="Matcher mode",
# value="NN-mutual",
# )
with gr.Accordion("RANSAC Setting", open=True):
with gr.Row(equal_height=False):
ransac_method = gr.Dropdown(
choices=ransac_zoo.keys(),
value=self.cfg["defaults"]["ransac_method"],
label="RANSAC Method",
interactive=True,
)
ransac_reproj_threshold = gr.Slider(
minimum=0.0,
maximum=12,
step=0.01,
label="Ransac Reproj threshold",
value=8.0,
)
ransac_confidence = gr.Slider(
minimum=0.0,
maximum=1,
step=0.00001,
label="Ransac Confidence",
value=self.cfg["defaults"]["ransac_confidence"],
)
ransac_max_iter = gr.Slider(
minimum=0.0,
maximum=100000,
step=100,
label="Ransac Iterations",
value=self.cfg["defaults"]["ransac_max_iter"],
)
button_ransac = gr.Button(
value="Rerun RANSAC", variant="primary"
)
with gr.Accordion("Geometry Setting", open=False):
with gr.Row(equal_height=False):
choice_geometry_type = gr.Radio(
["Fundamental", "Homography"],
label="Reconstruct Geometry",
value=self.cfg["defaults"][
"setting_geometry"
],
)
# collect inputs
state_cache = gr.State({})
inputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
gr.State(self.matcher_zoo),
# state_cache,
]
# Add some examples
with gr.Row():
# Example inputs
gr.Examples(
examples=gen_examples(),
inputs=inputs,
outputs=[],
fn=run_matching,
cache_examples=False,
label=(
"Examples (click one of the images below to Run"
" Match). Thx: WxBS"
),
)
with gr.Accordion("Supported Algorithms", open=False):
# add a table of supported algorithms
self.display_supported_algorithms()
with gr.Column():
output_keypoints = gr.Image(label="Keypoints", type="numpy")
output_matches_raw = gr.Image(
label="Raw Matches",
type="numpy",
)
output_matches_ransac = gr.Image(
label="Ransac Matches", type="numpy"
)
with gr.Accordion(
"Open for More: Matches Statistics", open=False
):
matches_result_info = gr.JSON(
label="Matches Statistics"
)
matcher_info = gr.JSON(label="Match info")
with gr.Accordion(
"Open for More: Warped Image", open=False
):
output_wrapped = gr.Image(
label="Wrapped Pair", type="numpy"
)
with gr.Accordion(
"Open for More: Geometry info", open=False
):
geometry_result = gr.JSON(
label="Reconstructed Geometry"
)
# callbacks
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image0,
)
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image1,
)
# collect outputs
outputs = [
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
geometry_result,
output_wrapped,
state_cache,
]
# button callbacks
button_run.click(
fn=run_matching, inputs=inputs, outputs=outputs
)
# Reset images
reset_outputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
input_image0,
input_image1,
match_image_src,
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
output_wrapped,
geometry_result,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
]
button_reset.click(
fn=self.ui_reset_state, inputs=None, outputs=reset_outputs
)
# run ransac button action
button_ransac.click(
fn=run_ransac,
inputs=[
state_cache,
choice_geometry_type,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
],
outputs=[
output_matches_ransac,
matches_result_info,
output_wrapped,
],
)
# estimate geo
choice_geometry_type.change(
fn=generate_warp_images,
inputs=[
input_image0,
input_image1,
geometry_result,
choice_geometry_type,
],
outputs=[output_wrapped, geometry_result],
)
def run(self):
self.app.queue().launch(
server_name=self.server_name,
server_port=self.server_port,
share=False,
)
def ui_change_imagebox(self, choice):
"""
Updates the image box with the given choice.
Args:
choice (list): The list of image sources to be displayed in the image box.
Returns:
dict: A dictionary containing the updated value, sources, and type for the image box.
"""
ret_dict = {
"value": None, # The updated value of the image box
"__type__": "update", # The type of update for the image box
}
if GRADIO_VERSION > "3":
return {
**ret_dict,
"sources": choice, # The list of image sources to be displayed
}
else:
return {
**ret_dict,
"source": choice, # The list of image sources to be displayed
}
def ui_reset_state(
self,
*args: Any,
) -> Tuple[
Optional[np.ndarray],
Optional[np.ndarray],
float,
int,
float,
str,
Dict[str, Any],
Dict[str, Any],
str,
Optional[np.ndarray],
Optional[np.ndarray],
Optional[np.ndarray],
Dict[str, Any],
Dict[str, Any],
Optional[np.ndarray],
Dict[str, Any],
str,
int,
float,
int,
]:
"""
Reset the state of the UI.
Returns:
tuple: A tuple containing the initial values for the UI state.
"""
key: str = list(self.matcher_zoo.keys())[
0
] # Get the first key from matcher_zoo
return (
None, # image0: Optional[np.ndarray]
None, # image1: Optional[np.ndarray]
self.cfg["defaults"][
"match_threshold"
], # matching_threshold: float
self.cfg["defaults"]["max_keypoints"], # max_features: int
self.cfg["defaults"][
"keypoint_threshold"
], # keypoint_threshold: float
key, # matcher: str
self.ui_change_imagebox("upload"), # input image0: Dict[str, Any]
self.ui_change_imagebox("upload"), # input image1: Dict[str, Any]
"upload", # match_image_src: str
None, # keypoints: Optional[np.ndarray]
None, # raw matches: Optional[np.ndarray]
None, # ransac matches: Optional[np.ndarray]
{}, # matches result info: Dict[str, Any]
{}, # matcher config: Dict[str, Any]
None, # warped image: Optional[np.ndarray]
{}, # geometry result: Dict[str, Any]
self.cfg["defaults"]["ransac_method"], # ransac_method: str
self.cfg["defaults"][
"ransac_reproj_threshold"
], # ransac_reproj_threshold: float
self.cfg["defaults"][
"ransac_confidence"
], # ransac_confidence: float
self.cfg["defaults"]["ransac_max_iter"], # ransac_max_iter: int
self.cfg["defaults"]["setting_geometry"], # geometry: str
)
def display_supported_algorithms(self, style="tab"):
def get_link(link, tag="Link"):
return "[{}]({})".format(tag, link) if link is not None else "None"
data = []
cfg = self.cfg["matcher_zoo"]
if style == "md":
markdown_table = "| Algo. | Conference | Code | Project | Paper |\n"
markdown_table += (
"| ----- | ---------- | ---- | ------- | ----- |\n"
)
for k, v in cfg.items():
if not v["info"]["display"]:
continue
github_link = get_link(v["info"]["github"])
project_link = get_link(v["info"]["project"])
paper_link = get_link(
v["info"]["paper"],
(
Path(v["info"]["paper"]).name[-10:]
if v["info"]["paper"] is not None
else "Link"
),
)
markdown_table += "{}|{}|{}|{}|{}\n".format(
v["info"]["name"], # display name
v["info"]["source"],
github_link,
project_link,
paper_link,
)
return gr.Markdown(markdown_table)
elif style == "tab":
for k, v in cfg.items():
if not v["info"].get("display", True):
continue
data.append(
[
v["info"]["name"],
v["info"]["source"],
v["info"]["github"],
v["info"]["paper"],
v["info"]["project"],
]
)
tab = gr.Dataframe(
headers=["Algo.", "Conference", "Code", "Paper", "Project"],
datatype=["str", "str", "str", "str", "str"],
col_count=(5, "fixed"),
value=data,
# wrap=True,
# min_width = 1000,
# height=1000,
)
return tab
|