File size: 5,291 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import warnings
from pathlib import Path
from hloc import logger
from hloc import matchers, extractors, logger
from hloc import match_dense, match_features, extract_features
from hloc.utils.viz import add_text, plot_keypoints
from common.utils import (
    load_config,
    get_model,
    get_feature_model,
    ransac_zoo,
    get_matcher_zoo,
    filter_matches,
    device,
    ROOT,
)
from common.viz import (
    fig2im,
    plot_images,
    display_matches,
    plot_color_line_matches,
)
import time
import matplotlib.pyplot as plt

warnings.simplefilter("ignore")


def test_modules(config: dict):
    img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
    img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
    image0 = cv2.imread(str(img_path1))
    image1 = cv2.imread(str(img_path2))
    keypoint_threshold = 0.0
    extract_max_keypoints = 2000
    match_threshold = 0.2
    log_path = ROOT / "experiments"
    log_path.mkdir(exist_ok=True, parents=True)

    matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"])
    for k, v in matcher_zoo_restored.items():
        if image0 is None or image1 is None:
            logger.error("Error: No images found! Please upload two images.")
        # init output
        output_keypoints = None
        output_matches_raw = None
        output_matches_ransac = None
        match_conf = v["matcher"]

        # update match config
        match_conf["model"]["match_threshold"] = match_threshold
        match_conf["model"]["max_keypoints"] = extract_max_keypoints
        matcher = get_model(match_conf)
        t1 = time.time()
        if v["dense"]:
            pred = match_dense.match_images(
                matcher,
                image0,
                image1,
                match_conf["preprocessing"],
                device=device,
            )
            del matcher
            extract_conf = None
            last_fixed = "{}".format(match_conf["model"]["name"])
        else:
            extract_conf = v["feature"]

            # update extract config
            extract_conf["model"]["max_keypoints"] = extract_max_keypoints
            extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
            extractor = get_feature_model(extract_conf)
            pred0 = extract_features.extract(
                extractor, image0, extract_conf["preprocessing"]
            )
            pred1 = extract_features.extract(
                extractor, image1, extract_conf["preprocessing"]
            )
            pred = match_features.match_images(matcher, pred0, pred1)
            del extractor
            last_fixed = "{}_{}".format(
                extract_conf["model"]["name"], match_conf["model"]["name"]
            )

        # keypoints on images
        logger.info(f"Match features done using: {time.time()-t1:.3f}s")
        t1 = time.time()
        texts = [
            f"image pairs: {img_path1.name} & {img_path2.name}",
            "",
        ]
        titles = [
            "Image 0 - Keypoints",
            "Image 1 - Keypoints",
        ]
        output_keypoints = plot_images([image0, image1], titles=titles, dpi=300)
        if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
            plot_keypoints([pred["keypoints0"], pred["keypoints1"]])
            text = (
                f"# keypoints0: {len(pred['keypoints0'])} \n"
                + f"# keypoints1: {len(pred['keypoints1'])}"
            )
            add_text(0, text, fs=15)
        output_keypoints = fig2im(output_keypoints)

        # plot images with raw matches
        titles = [
            "Image 0 - Raw matched keypoints",
            "Image 1 - Raw matched keypoints",
        ]
        output_matches_raw, num_matches_raw = display_matches(
            pred, titles=titles
        )
        logger.info(f"Plot keypoints done using: {time.time()-t1:.3f}s")
        t1 = time.time()

        filter_matches(
            pred,
            ransac_method=config["defaults"]["ransac_method"],
            ransac_reproj_threshold=config["defaults"][
                "ransac_reproj_threshold"
            ],
            ransac_confidence=config["defaults"]["ransac_confidence"],
            ransac_max_iter=config["defaults"]["ransac_max_iter"],
        )
        # plot images with ransac matches
        titles = [
            "Image 0 - Ransac matched keypoints",
            "Image 1 - Ransac matched keypoints",
        ]
        output_matches_ransac, num_matches_ransac = display_matches(
            pred, titles=titles
        )
        logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")

        img_keypoints_path = log_path / f"img_keypoints_{last_fixed}.png"
        img_matches_raw_path = log_path / f"img_matches_raw_{last_fixed}.png"
        img_matches_ransac_path = (
            log_path / f"img_matches_ransac_{last_fixed}.png"
        )
        cv2.imwrite(str(img_keypoints_path), output_keypoints)
        cv2.imwrite(str(img_matches_raw_path), output_matches_raw)
        cv2.imwrite(str(img_matches_ransac_path), output_matches_ransac)

        plt.close("all")


if __name__ == "__main__":
    import argparse

    config = load_config(ROOT / "common/config.yaml")
    test_modules(config)