Spaces:
Sleeping
Sleeping
File size: 6,467 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from collections import defaultdict
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
from ..datasets import get_dataset
from ..models.cache_loader import CacheLoader
from ..settings import EVAL_PATH
from ..utils.export_predictions import export_predictions
from .eval_pipeline import EvalPipeline, load_eval
from .io import get_eval_parser, load_model, parse_eval_args
from .utils import aggregate_pr_results, get_tp_fp_pts
def eval_dataset(loader, pred_file, suffix=""):
results = defaultdict(list)
results["num_pos" + suffix] = 0
cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()
for data in tqdm(loader):
pred = cache_loader(data)
if suffix == "":
scores = pred["matching_scores0"].numpy()
sort_indices = np.argsort(scores)[::-1]
gt_matches = pred["gt_matches0"].numpy()[sort_indices]
pred_matches = pred["matches0"].numpy()[sort_indices]
else:
scores = pred["line_matching_scores0"].numpy()
sort_indices = np.argsort(scores)[::-1]
gt_matches = pred["gt_line_matches0"].numpy()[sort_indices]
pred_matches = pred["line_matches0"].numpy()[sort_indices]
scores = scores[sort_indices]
tp, fp, scores, num_pos = get_tp_fp_pts(pred_matches, gt_matches, scores)
results["tp" + suffix].append(tp)
results["fp" + suffix].append(fp)
results["scores" + suffix].append(scores)
results["num_pos" + suffix] += num_pos
# Aggregate the results
return aggregate_pr_results(results, suffix=suffix)
class ETH3DPipeline(EvalPipeline):
default_conf = {
"data": {
"name": "eth3d",
"batch_size": 1,
"train_batch_size": 1,
"val_batch_size": 1,
"test_batch_size": 1,
"num_workers": 16,
},
"model": {
"name": "gluefactory.models.two_view_pipeline",
"ground_truth": {
"name": "gluefactory.models.matchers.depth_matcher",
"use_lines": False,
},
"run_gt_in_forward": True,
},
"eval": {"plot_methods": [], "plot_line_methods": [], "eval_lines": False},
}
export_keys = [
"gt_matches0",
"matches0",
"matching_scores0",
]
optional_export_keys = [
"gt_line_matches0",
"line_matches0",
"line_matching_scores0",
]
def get_dataloader(self, data_conf=None):
data_conf = data_conf if data_conf is not None else self.default_conf["data"]
dataset = get_dataset("eth3d")(data_conf)
return dataset.get_data_loader("test")
def get_predictions(self, experiment_dir, model=None, overwrite=False):
pred_file = experiment_dir / "predictions.h5"
if not pred_file.exists() or overwrite:
if model is None:
model = load_model(self.conf.model, self.conf.checkpoint)
export_predictions(
self.get_dataloader(self.conf.data),
model,
pred_file,
keys=self.export_keys,
optional_keys=self.optional_export_keys,
)
return pred_file
def run_eval(self, loader, pred_file):
eval_conf = self.conf.eval
r = eval_dataset(loader, pred_file)
if self.conf.eval.eval_lines:
r.update(eval_dataset(loader, pred_file, conf=eval_conf, suffix="_lines"))
s = {}
return s, {}, r
def plot_pr_curve(
models_name, results, dst_file="eth3d_pr_curve.pdf", title=None, suffix=""
):
plt.figure()
f_scores = np.linspace(0.2, 0.9, num=8)
for f_score in f_scores:
x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
plt.plot(x[y >= 0], y[y >= 0], color=[0, 0.5, 0], alpha=0.3)
plt.annotate(
"f={0:0.1}".format(f_score),
xy=(0.9, y[45] + 0.02),
alpha=0.4,
fontsize=14,
)
plt.rcParams.update({"font.size": 12})
# plt.rc('legend', fontsize=10)
plt.grid(True)
plt.axis([0.0, 1.0, 0.0, 1.0])
plt.xticks(np.arange(0, 1.05, step=0.1), fontsize=16)
plt.xlabel("Recall", fontsize=18)
plt.ylabel("Precision", fontsize=18)
plt.yticks(np.arange(0, 1.05, step=0.1), fontsize=16)
plt.ylim([0.3, 1.0])
prop_cycle = plt.rcParams["axes.prop_cycle"]
colors = prop_cycle.by_key()["color"]
for m, c in zip(models_name, colors):
sAP_string = f'{m}: {results[m]["AP" + suffix]:.1f}'
plt.plot(
results[m]["curve_recall" + suffix],
results[m]["curve_precision" + suffix],
label=sAP_string,
color=c,
)
plt.legend(fontsize=16, loc="lower right")
if title:
plt.title(title)
plt.tight_layout(pad=0.5)
print(f"Saving plot to: {dst_file}")
plt.savefig(dst_file)
plt.show()
if __name__ == "__main__":
dataset_name = Path(__file__).stem
parser = get_eval_parser()
args = parser.parse_intermixed_args()
default_conf = OmegaConf.create(ETH3DPipeline.default_conf)
# mingle paths
output_dir = Path(EVAL_PATH, dataset_name)
output_dir.mkdir(exist_ok=True, parents=True)
name, conf = parse_eval_args(
dataset_name,
args,
"configs/",
default_conf,
)
experiment_dir = output_dir / name
experiment_dir.mkdir(exist_ok=True)
pipeline = ETH3DPipeline(conf)
s, f, r = pipeline.run(
experiment_dir, overwrite=args.overwrite, overwrite_eval=args.overwrite_eval
)
# print results
for k, v in r.items():
if k.startswith("AP"):
print(f"{k}: {v:.2f}")
if args.plot:
results = {}
for m in conf.eval.plot_methods:
exp_dir = output_dir / m
results[m] = load_eval(exp_dir)[1]
plot_pr_curve(conf.eval.plot_methods, results, dst_file="eth3d_pr_curve.pdf")
if conf.eval.eval_lines:
for m in conf.eval.plot_line_methods:
exp_dir = output_dir / m
results[m] = load_eval(exp_dir)[1]
plot_pr_curve(
conf.eval.plot_line_methods,
results,
dst_file="eth3d_pr_curve_lines.pdf",
suffix="_lines",
)
|