Spaces:
Sleeping
Sleeping
File size: 13,815 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
Convenience classes for an SE3 pose and a pinhole Camera with lens distortion.
Based on PyTorch tensors: differentiable, batched, with GPU support.
"""
import functools
import inspect
import math
from typing import Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
from .utils import (
J_distort_points,
distort_points,
skew_symmetric,
so3exp_map,
to_homogeneous,
)
def autocast(func):
"""Cast the inputs of a TensorWrapper method to PyTorch tensors
if they are numpy arrays. Use the device and dtype of the wrapper.
"""
@functools.wraps(func)
def wrap(self, *args):
device = torch.device("cpu")
dtype = None
if isinstance(self, TensorWrapper):
if self._data is not None:
device = self.device
dtype = self.dtype
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
raise ValueError(self)
cast_args = []
for arg in args:
if isinstance(arg, np.ndarray):
arg = torch.from_numpy(arg)
arg = arg.to(device=device, dtype=dtype)
cast_args.append(arg)
return func(self, *cast_args)
return wrap
class TensorWrapper:
_data = None
@autocast
def __init__(self, data: torch.Tensor):
self._data = data
@property
def shape(self):
return self._data.shape[:-1]
@property
def device(self):
return self._data.device
@property
def dtype(self):
return self._data.dtype
def __getitem__(self, index):
return self.__class__(self._data[index])
def __setitem__(self, index, item):
self._data[index] = item.data
def to(self, *args, **kwargs):
return self.__class__(self._data.to(*args, **kwargs))
def cpu(self):
return self.__class__(self._data.cpu())
def cuda(self):
return self.__class__(self._data.cuda())
def pin_memory(self):
return self.__class__(self._data.pin_memory())
def float(self):
return self.__class__(self._data.float())
def double(self):
return self.__class__(self._data.double())
def detach(self):
return self.__class__(self._data.detach())
@classmethod
def stack(cls, objects: List, dim=0, *, out=None):
data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
return cls(data)
@classmethod
def __torch_function__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.stack:
return self.stack(*args, **kwargs)
else:
return NotImplemented
class Pose(TensorWrapper):
def __init__(self, data: torch.Tensor):
assert data.shape[-1] == 12
super().__init__(data)
@classmethod
@autocast
def from_Rt(cls, R: torch.Tensor, t: torch.Tensor):
"""Pose from a rotation matrix and translation vector.
Accepts numpy arrays or PyTorch tensors.
Args:
R: rotation matrix with shape (..., 3, 3).
t: translation vector with shape (..., 3).
"""
assert R.shape[-2:] == (3, 3)
assert t.shape[-1] == 3
assert R.shape[:-2] == t.shape[:-1]
data = torch.cat([R.flatten(start_dim=-2), t], -1)
return cls(data)
@classmethod
@autocast
def from_aa(cls, aa: torch.Tensor, t: torch.Tensor):
"""Pose from an axis-angle rotation vector and translation vector.
Accepts numpy arrays or PyTorch tensors.
Args:
aa: axis-angle rotation vector with shape (..., 3).
t: translation vector with shape (..., 3).
"""
assert aa.shape[-1] == 3
assert t.shape[-1] == 3
assert aa.shape[:-1] == t.shape[:-1]
return cls.from_Rt(so3exp_map(aa), t)
@classmethod
def from_4x4mat(cls, T: torch.Tensor):
"""Pose from an SE(3) transformation matrix.
Args:
T: transformation matrix with shape (..., 4, 4).
"""
assert T.shape[-2:] == (4, 4)
R, t = T[..., :3, :3], T[..., :3, 3]
return cls.from_Rt(R, t)
@classmethod
def from_colmap(cls, image: NamedTuple):
"""Pose from a COLMAP Image."""
return cls.from_Rt(image.qvec2rotmat(), image.tvec)
@property
def R(self) -> torch.Tensor:
"""Underlying rotation matrix with shape (..., 3, 3)."""
rvec = self._data[..., :9]
return rvec.reshape(rvec.shape[:-1] + (3, 3))
@property
def t(self) -> torch.Tensor:
"""Underlying translation vector with shape (..., 3)."""
return self._data[..., -3:]
def inv(self) -> "Pose":
"""Invert an SE(3) pose."""
R = self.R.transpose(-1, -2)
t = -(R @ self.t.unsqueeze(-1)).squeeze(-1)
return self.__class__.from_Rt(R, t)
def compose(self, other: "Pose") -> "Pose":
"""Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C."""
R = self.R @ other.R
t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1)
return self.__class__.from_Rt(R, t)
@autocast
def transform(self, p3d: torch.Tensor) -> torch.Tensor:
"""Transform a set of 3D points.
Args:
p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3).
"""
assert p3d.shape[-1] == 3
# assert p3d.shape[:-2] == self.shape # allow broadcasting
return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2)
def __mul__(self, p3D: torch.Tensor) -> torch.Tensor:
"""Transform a set of 3D points: T_A2B * p3D_A -> p3D_B."""
return self.transform(p3D)
def __matmul__(
self, other: Union["Pose", torch.Tensor]
) -> Union["Pose", torch.Tensor]:
"""Transform a set of 3D points: T_A2B * p3D_A -> p3D_B.
or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C."""
if isinstance(other, self.__class__):
return self.compose(other)
else:
return self.transform(other)
@autocast
def J_transform(self, p3d_out: torch.Tensor):
# [[1,0,0,0,-pz,py],
# [0,1,0,pz,0,-px],
# [0,0,1,-py,px,0]]
J_t = torch.diag_embed(torch.ones_like(p3d_out))
J_rot = -skew_symmetric(p3d_out)
J = torch.cat([J_t, J_rot], dim=-1)
return J # N x 3 x 6
def numpy(self) -> Tuple[np.ndarray]:
return self.R.numpy(), self.t.numpy()
def magnitude(self) -> Tuple[torch.Tensor]:
"""Magnitude of the SE(3) transformation.
Returns:
dr: rotation anngle in degrees.
dt: translation distance in meters.
"""
trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1)
cos = torch.clamp((trace - 1) / 2, -1, 1)
dr = torch.acos(cos).abs() / math.pi * 180
dt = torch.norm(self.t, dim=-1)
return dr, dt
def __repr__(self):
return f"Pose: {self.shape} {self.dtype} {self.device}"
class Camera(TensorWrapper):
eps = 1e-4
def __init__(self, data: torch.Tensor):
assert data.shape[-1] in {6, 8, 10}
super().__init__(data)
@classmethod
def from_colmap(cls, camera: Union[Dict, NamedTuple]):
"""Camera from a COLMAP Camera tuple or dictionary.
We use the corner-convetion from COLMAP (center of top left pixel is (0.5, 0.5))
"""
if isinstance(camera, tuple):
camera = camera._asdict()
model = camera["model"]
params = camera["params"]
if model in ["OPENCV", "PINHOLE", "RADIAL"]:
(fx, fy, cx, cy), params = np.split(params, [4])
elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL"]:
(f, cx, cy), params = np.split(params, [3])
fx = fy = f
if model == "SIMPLE_RADIAL":
params = np.r_[params, 0.0]
else:
raise NotImplementedError(model)
data = np.r_[camera["width"], camera["height"], fx, fy, cx, cy, params]
return cls(data)
@classmethod
@autocast
def from_calibration_matrix(cls, K: torch.Tensor):
cx, cy = K[..., 0, 2], K[..., 1, 2]
fx, fy = K[..., 0, 0], K[..., 1, 1]
data = torch.stack([2 * cx, 2 * cy, fx, fy, cx, cy], -1)
return cls(data)
@autocast
def calibration_matrix(self):
K = torch.zeros(
*self._data.shape[:-1],
3,
3,
device=self._data.device,
dtype=self._data.dtype,
)
K[..., 0, 2] = self._data[..., 4]
K[..., 1, 2] = self._data[..., 5]
K[..., 0, 0] = self._data[..., 2]
K[..., 1, 1] = self._data[..., 3]
K[..., 2, 2] = 1.0
return K
@property
def size(self) -> torch.Tensor:
"""Size (width height) of the images, with shape (..., 2)."""
return self._data[..., :2]
@property
def f(self) -> torch.Tensor:
"""Focal lengths (fx, fy) with shape (..., 2)."""
return self._data[..., 2:4]
@property
def c(self) -> torch.Tensor:
"""Principal points (cx, cy) with shape (..., 2)."""
return self._data[..., 4:6]
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., {0, 2, 4})."""
return self._data[..., 6:]
@autocast
def scale(self, scales: torch.Tensor):
"""Update the camera parameters after resizing an image."""
s = scales
data = torch.cat([self.size * s, self.f * s, self.c * s, self.dist], -1)
return self.__class__(data)
def crop(self, left_top: Tuple[float], size: Tuple[int]):
"""Update the camera parameters after cropping an image."""
left_top = self._data.new_tensor(left_top)
size = self._data.new_tensor(size)
data = torch.cat([size, self.f, self.c - left_top, self.dist], -1)
return self.__class__(data)
@autocast
def in_image(self, p2d: torch.Tensor):
"""Check if 2D points are within the image boundaries."""
assert p2d.shape[-1] == 2
# assert p2d.shape[:-2] == self.shape # allow broadcasting
size = self.size.unsqueeze(-2)
valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
return valid
@autocast
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Project 3D points into the camera plane and check for visibility."""
z = p3d[..., -1]
valid = z > self.eps
z = z.clamp(min=self.eps)
p2d = p3d[..., :-1] / z.unsqueeze(-1)
return p2d, valid
def J_project(self, p3d: torch.Tensor):
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
zero = torch.zeros_like(z)
z = z.clamp(min=self.eps)
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
J = J.reshape(p3d.shape[:-1] + (2, 3))
return J # N x 2 x 3
@autocast
def distort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates
and check for validity of the distortion model.
"""
assert pts.shape[-1] == 2
# assert pts.shape[:-2] == self.shape # allow broadcasting
return distort_points(pts, self.dist)
def J_distort(self, pts: torch.Tensor):
return J_distort_points(pts, self.dist) # N x 2 x 2
@autocast
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
@autocast
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2)
def J_denormalize(self):
return torch.diag_embed(self.f).unsqueeze(-3) # 1 x 2 x 2
@autocast
def cam2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Transform 3D points into 2D pixel coordinates."""
p2d, visible = self.project(p3d)
p2d, mask = self.distort(p2d)
p2d = self.denormalize(p2d)
valid = visible & mask & self.in_image(p2d)
return p2d, valid
def J_world2image(self, p3d: torch.Tensor):
p2d_dist, valid = self.project(p3d)
J = self.J_denormalize() @ self.J_distort(p2d_dist) @ self.J_project(p3d)
return J, valid
@autocast
def image2cam(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert 2D pixel corrdinates to 3D points with z=1"""
assert self._data.shape
p2d = self.normalize(p2d)
# iterative undistortion
return to_homogeneous(p2d)
def to_cameradict(self, camera_model: Optional[str] = None) -> List[Dict]:
data = self._data.clone()
if data.dim() == 1:
data = data.unsqueeze(0)
assert data.dim() == 2
b, d = data.shape
if camera_model is None:
camera_model = {6: "PINHOLE", 8: "RADIAL", 10: "OPENCV"}[d]
cameras = []
for i in range(b):
if camera_model.startswith("SIMPLE_"):
params = [x.item() for x in data[i, 3 : min(d, 7)]]
else:
params = [x.item() for x in data[i, 2:]]
cameras.append(
{
"model": camera_model,
"width": int(data[i, 0].item()),
"height": int(data[i, 1].item()),
"params": params,
}
)
return cameras if self._data.dim() == 2 else cameras[0]
def __repr__(self):
return f"Camera {self.shape} {self.dtype} {self.device}"
|