Spaces:
Sleeping
Sleeping
File size: 28,471 Bytes
f90241e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# visloc script with support for coarse to fine
# --------------------------------------------------------
import os
import numpy as np
import random
import torch
import torchvision.transforms as tvf
import argparse
from tqdm import tqdm
from PIL import Image
import math
from mast3r.model import AsymmetricMASt3R
from mast3r.fast_nn import fast_reciprocal_NNs
from mast3r.utils.coarse_to_fine import select_pairs_of_crops, crop_slice
from mast3r.utils.collate import cat_collate, cat_collate_fn_map
from mast3r.utils.misc import mkdir_for
from mast3r.datasets.utils.cropping import crop_to_homography
import mast3r.utils.path_to_dust3r # noqa
from dust3r.inference import inference, loss_of_one_batch
from dust3r.utils.geometry import geotrf, colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics
from dust3r.datasets.utils.transforms import ImgNorm
from dust3r_visloc.datasets import *
from dust3r_visloc.localization import run_pnp
from dust3r_visloc.evaluation import get_pose_error, aggregate_stats, export_results
from dust3r_visloc.datasets.utils import get_HW_resolution, rescale_points3d
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="visloc dataset to eval")
parser_weights = parser.add_mutually_exclusive_group(required=True)
parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None)
parser_weights.add_argument("--model_name", type=str, help="name of the model weights",
choices=["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"])
parser.add_argument("--confidence_threshold", type=float, default=1.001,
help="confidence values higher than threshold are invalid")
parser.add_argument('--pixel_tol', default=5, type=int)
parser.add_argument("--coarse_to_fine", action='store_true', default=False,
help="do the matching from coarse to fine")
parser.add_argument("--max_image_size", type=int, default=None,
help="max image size for the fine resolution")
parser.add_argument("--c2f_crop_with_homography", action='store_true', default=False,
help="when using coarse to fine, crop with homographies to keep cx, cy centered")
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
parser.add_argument("--pnp_mode", type=str, default="cv2", choices=['cv2', 'poselib', 'pycolmap'],
help="pnp lib to use")
parser_reproj = parser.add_mutually_exclusive_group()
parser_reproj.add_argument("--reprojection_error", type=float, default=5.0, help="pnp reprojection error")
parser_reproj.add_argument("--reprojection_error_diag_ratio", type=float, default=None,
help="pnp reprojection error as a ratio of the diagonal of the image")
parser.add_argument("--max_batch_size", type=int, default=48,
help="max batch size for inference on crops when using coarse to fine")
parser.add_argument("--pnp_max_points", type=int, default=100_000, help="pnp maximum number of points kept")
parser.add_argument("--viz_matches", type=int, default=0, help="debug matches")
parser.add_argument("--output_dir", type=str, default=None, help="output path")
parser.add_argument("--output_label", type=str, default='', help="prefix for results files")
return parser
@torch.no_grad()
def coarse_matching(query_view, map_view, model, device, pixel_tol, fast_nn_params):
# prepare batch
imgs = []
for idx, img in enumerate([query_view['rgb_rescaled'], map_view['rgb_rescaled']]):
imgs.append(dict(img=img.unsqueeze(0), true_shape=np.int32([img.shape[1:]]),
idx=idx, instance=str(idx)))
output = inference([tuple(imgs)], model, device, batch_size=1, verbose=False)
pred1, pred2 = output['pred1'], output['pred2']
conf_list = [pred1['desc_conf'].squeeze(0).cpu().numpy(), pred2['desc_conf'].squeeze(0).cpu().numpy()]
desc_list = [pred1['desc'].squeeze(0).detach(), pred2['desc'].squeeze(0).detach()]
# find 2D-2D matches between the two images
PQ, PM = desc_list[0], desc_list[1]
if len(PQ) == 0 or len(PM) == 0:
return [], [], [], []
if pixel_tol == 0:
matches_im_map, matches_im_query = fast_reciprocal_NNs(PM, PQ, subsample_or_initxy1=8, **fast_nn_params)
HM, WM = map_view['rgb_rescaled'].shape[1:]
HQ, WQ = query_view['rgb_rescaled'].shape[1:]
# ignore small border around the edge
valid_matches_map = (matches_im_map[:, 0] >= 3) & (matches_im_map[:, 0] < WM - 3) & (
matches_im_map[:, 1] >= 3) & (matches_im_map[:, 1] < HM - 3)
valid_matches_query = (matches_im_query[:, 0] >= 3) & (matches_im_query[:, 0] < WQ - 3) & (
matches_im_query[:, 1] >= 3) & (matches_im_query[:, 1] < HQ - 3)
valid_matches = valid_matches_map & valid_matches_query
matches_im_map = matches_im_map[valid_matches]
matches_im_query = matches_im_query[valid_matches]
valid_pts3d = []
matches_confs = []
else:
yM, xM = torch.where(map_view['valid_rescaled'])
matches_im_map, matches_im_query = fast_reciprocal_NNs(PM, PQ, (xM, yM), pixel_tol=pixel_tol, **fast_nn_params)
valid_pts3d = map_view['pts3d_rescaled'].cpu().numpy()[matches_im_map[:, 1], matches_im_map[:, 0]]
matches_confs = np.minimum(
conf_list[1][matches_im_map[:, 1], matches_im_map[:, 0]],
conf_list[0][matches_im_query[:, 1], matches_im_query[:, 0]]
)
# from cv2 to colmap
matches_im_query = matches_im_query.astype(np.float64)
matches_im_map = matches_im_map.astype(np.float64)
matches_im_query[:, 0] += 0.5
matches_im_query[:, 1] += 0.5
matches_im_map[:, 0] += 0.5
matches_im_map[:, 1] += 0.5
# rescale coordinates
matches_im_query = geotrf(query_view['to_orig'], matches_im_query, norm=True)
matches_im_map = geotrf(map_view['to_orig'], matches_im_map, norm=True)
# from colmap back to cv2
matches_im_query[:, 0] -= 0.5
matches_im_query[:, 1] -= 0.5
matches_im_map[:, 0] -= 0.5
matches_im_map[:, 1] -= 0.5
return valid_pts3d, matches_im_query, matches_im_map, matches_confs
@torch.no_grad()
def crops_inference(pairs, model, device, batch_size=48, verbose=True):
assert len(pairs) == 2, "Error, data should be a tuple of dicts containing the batch of image pairs"
# Forward a possibly big bunch of data, by blocks of batch_size
B = pairs[0]['img'].shape[0]
if B < batch_size:
return loss_of_one_batch(pairs, model, None, device=device, symmetrize_batch=False)
preds = []
for ii in range(0, B, batch_size):
sel = slice(ii, ii + min(B - ii, batch_size))
temp_data = [{}, {}]
for di in [0, 1]:
temp_data[di] = {kk: pairs[di][kk][sel]
for kk in pairs[di].keys() if pairs[di][kk] is not None} # copy chunk for forward
preds.append(loss_of_one_batch(temp_data, model,
None, device=device, symmetrize_batch=False)) # sequential forward
# Merge all preds
return cat_collate(preds, collate_fn_map=cat_collate_fn_map)
@torch.no_grad()
def fine_matching(query_views, map_views, model, device, max_batch_size, pixel_tol, fast_nn_params):
assert pixel_tol > 0
output = crops_inference([query_views, map_views],
model, device, batch_size=max_batch_size, verbose=False)
pred1, pred2 = output['pred1'], output['pred2']
descs1 = pred1['desc'].clone()
descs2 = pred2['desc'].clone()
confs1 = pred1['desc_conf'].clone()
confs2 = pred2['desc_conf'].clone()
# Compute matches
valid_pts3d, matches_im_map, matches_im_query, matches_confs = [], [], [], []
for ppi, (pp1, pp2, cc11, cc21) in enumerate(zip(descs1, descs2, confs1, confs2)):
valid_ppi = map_views['valid'][ppi]
pts3d_ppi = map_views['pts3d'][ppi].cpu().numpy()
conf_list_ppi = [cc11.cpu().numpy(), cc21.cpu().numpy()]
y_ppi, x_ppi = torch.where(valid_ppi)
matches_im_map_ppi, matches_im_query_ppi = fast_reciprocal_NNs(pp2, pp1, (x_ppi, y_ppi),
pixel_tol=pixel_tol, **fast_nn_params)
valid_pts3d_ppi = pts3d_ppi[matches_im_map_ppi[:, 1], matches_im_map_ppi[:, 0]]
matches_confs_ppi = np.minimum(
conf_list_ppi[1][matches_im_map_ppi[:, 1], matches_im_map_ppi[:, 0]],
conf_list_ppi[0][matches_im_query_ppi[:, 1], matches_im_query_ppi[:, 0]]
)
# inverse operation where we uncrop pixel coordinates
matches_im_map_ppi = geotrf(map_views['to_orig'][ppi].cpu().numpy(), matches_im_map_ppi.copy(), norm=True)
matches_im_query_ppi = geotrf(query_views['to_orig'][ppi].cpu().numpy(), matches_im_query_ppi.copy(), norm=True)
matches_im_map.append(matches_im_map_ppi)
matches_im_query.append(matches_im_query_ppi)
valid_pts3d.append(valid_pts3d_ppi)
matches_confs.append(matches_confs_ppi)
if len(valid_pts3d) == 0:
return [], [], [], []
matches_im_map = np.concatenate(matches_im_map, axis=0)
matches_im_query = np.concatenate(matches_im_query, axis=0)
valid_pts3d = np.concatenate(valid_pts3d, axis=0)
matches_confs = np.concatenate(matches_confs, axis=0)
return valid_pts3d, matches_im_query, matches_im_map, matches_confs
def crop(img, mask, pts3d, crop, intrinsics=None):
out_cropped_img = img.clone()
if mask is not None:
out_cropped_mask = mask.clone()
else:
out_cropped_mask = None
if pts3d is not None:
out_cropped_pts3d = pts3d.clone()
else:
out_cropped_pts3d = None
to_orig = torch.eye(3, device=img.device)
# If intrinsics available, crop and apply rectifying homography. Otherwise, just crop
if intrinsics is not None:
K_old = intrinsics
imsize, K_new, R, H = crop_to_homography(K_old, crop)
# apply homography to image
H /= H[2, 2]
homo8 = H.ravel().tolist()[:8]
# From float tensor to uint8 PIL Image
pilim = Image.fromarray((255 * (img + 1.) / 2).to(torch.uint8).numpy())
pilout_cropped_img = pilim.transform(imsize, Image.Transform.PERSPECTIVE,
homo8, resample=Image.Resampling.BICUBIC)
# From uint8 PIL Image to float tensor
out_cropped_img = 2. * torch.tensor(np.array(pilout_cropped_img)).to(img) / 255. - 1.
if out_cropped_mask is not None:
pilmask = Image.fromarray((255 * out_cropped_mask).to(torch.uint8).numpy())
pilout_cropped_mask = pilmask.transform(
imsize, Image.Transform.PERSPECTIVE, homo8, resample=Image.Resampling.NEAREST)
out_cropped_mask = torch.from_numpy(np.array(pilout_cropped_mask) > 0).to(out_cropped_mask.dtype)
if out_cropped_pts3d is not None:
out_cropped_pts3d = out_cropped_pts3d.numpy()
out_cropped_X = np.array(Image.fromarray(out_cropped_pts3d[:, :, 0]).transform(imsize,
Image.Transform.PERSPECTIVE,
homo8,
resample=Image.Resampling.NEAREST))
out_cropped_Y = np.array(Image.fromarray(out_cropped_pts3d[:, :, 1]).transform(imsize,
Image.Transform.PERSPECTIVE,
homo8,
resample=Image.Resampling.NEAREST))
out_cropped_Z = np.array(Image.fromarray(out_cropped_pts3d[:, :, 2]).transform(imsize,
Image.Transform.PERSPECTIVE,
homo8,
resample=Image.Resampling.NEAREST))
out_cropped_pts3d = torch.from_numpy(np.stack([out_cropped_X, out_cropped_Y, out_cropped_Z], axis=-1))
to_orig = torch.tensor(H, device=img.device)
else:
out_cropped_img = img[crop_slice(crop)]
if out_cropped_mask is not None:
out_cropped_mask = out_cropped_mask[crop_slice(crop)]
if out_cropped_pts3d is not None:
out_cropped_pts3d = out_cropped_pts3d[crop_slice(crop)]
to_orig[:2, -1] = torch.tensor(crop[:2])
return out_cropped_img, out_cropped_mask, out_cropped_pts3d, to_orig
def resize_image_to_max(max_image_size, rgb, K):
W, H = rgb.size
if max_image_size and max(W, H) > max_image_size:
islandscape = (W >= H)
if islandscape:
WMax = max_image_size
HMax = int(H * (WMax / W))
else:
HMax = max_image_size
WMax = int(W * (HMax / H))
resize_op = tvf.Compose([ImgNorm, tvf.Resize(size=[HMax, WMax])])
rgb_tensor = resize_op(rgb).permute(1, 2, 0)
to_orig_max = np.array([[W / WMax, 0, 0],
[0, H / HMax, 0],
[0, 0, 1]])
to_resize_max = np.array([[WMax / W, 0, 0],
[0, HMax / H, 0],
[0, 0, 1]])
# Generate new camera parameters
new_K = opencv_to_colmap_intrinsics(K)
new_K[0, :] *= WMax / W
new_K[1, :] *= HMax / H
new_K = colmap_to_opencv_intrinsics(new_K)
else:
rgb_tensor = ImgNorm(rgb).permute(1, 2, 0)
to_orig_max = np.eye(3)
to_resize_max = np.eye(3)
HMax, WMax = H, W
new_K = K
return rgb_tensor, new_K, to_orig_max, to_resize_max, (HMax, WMax)
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
conf_thr = args.confidence_threshold
device = args.device
pnp_mode = args.pnp_mode
assert args.pixel_tol > 0
reprojection_error = args.reprojection_error
reprojection_error_diag_ratio = args.reprojection_error_diag_ratio
pnp_max_points = args.pnp_max_points
viz_matches = args.viz_matches
if args.weights is not None:
weights_path = args.weights
else:
weights_path = "naver/" + args.model_name
model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device)
fast_nn_params = dict(device=device, dist='dot', block_size=2**13)
dataset = eval(args.dataset)
dataset.set_resolution(model)
query_names = []
poses_pred = []
pose_errors = []
angular_errors = []
params_str = f'tol_{args.pixel_tol}' + ("_c2f" if args.coarse_to_fine else '')
if args.max_image_size is not None:
params_str = params_str + f'_{args.max_image_size}'
if args.coarse_to_fine and args.c2f_crop_with_homography:
params_str = params_str + '_with_homography'
for idx in tqdm(range(len(dataset))):
views = dataset[(idx)] # 0 is the query
query_view = views[0]
map_views = views[1:]
query_names.append(query_view['image_name'])
query_pts2d = []
query_pts3d = []
maxdim = max(model.patch_embed.img_size)
query_rgb_tensor, query_K, query_to_orig_max, query_to_resize_max, (HQ, WQ) = resize_image_to_max(
args.max_image_size, query_view['rgb'], query_view['intrinsics'])
# pairs of crops have the same resolution
query_resolution = get_HW_resolution(HQ, WQ, maxdim=maxdim, patchsize=model.patch_embed.patch_size)
for map_view in map_views:
if args.output_dir is not None:
cache_file = os.path.join(args.output_dir, 'matches', params_str,
query_view['image_name'], map_view['image_name'] + '.npz')
else:
cache_file = None
if cache_file is not None and os.path.isfile(cache_file):
matches = np.load(cache_file)
valid_pts3d = matches['valid_pts3d']
matches_im_query = matches['matches_im_query']
matches_im_map = matches['matches_im_map']
matches_conf = matches['matches_conf']
else:
# coarse matching
if args.coarse_to_fine and (maxdim < max(WQ, HQ)):
# use all points
_, coarse_matches_im0, coarse_matches_im1, _ = coarse_matching(query_view, map_view, model, device,
0, fast_nn_params)
# visualize a few matches
if viz_matches > 0:
num_matches = coarse_matches_im1.shape[0]
print(f'found {num_matches} matches')
viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])]
from matplotlib import pyplot as pl
n_viz = viz_matches
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int)
viz_matches_im_query = coarse_matches_im0[match_idx_to_viz]
viz_matches_im_map = coarse_matches_im1[match_idx_to_viz]
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2]
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)),
'constant', constant_values=0)
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)),
'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im_query[i].T, viz_matches_im_map[i].T
pl.plot([x0, x1 + W0], [y0, y1], '-+',
color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
valid_all = map_view['valid']
pts3d = map_view['pts3d']
WM_full, HM_full = map_view['rgb'].size
map_rgb_tensor, map_K, map_to_orig_max, map_to_resize_max, (HM, WM) = resize_image_to_max(
args.max_image_size, map_view['rgb'], map_view['intrinsics'])
if WM_full != WM or HM_full != HM:
y_full, x_full = torch.where(valid_all)
pos2d_cv2 = torch.stack([x_full, y_full], dim=-1).cpu().numpy().astype(np.float64)
sparse_pts3d = pts3d[y_full, x_full].cpu().numpy()
_, _, pts3d_max, valid_max = rescale_points3d(
pos2d_cv2, sparse_pts3d, map_to_resize_max, HM, WM)
pts3d = torch.from_numpy(pts3d_max)
valid_all = torch.from_numpy(valid_max)
coarse_matches_im0 = geotrf(query_to_resize_max, coarse_matches_im0, norm=True)
coarse_matches_im1 = geotrf(map_to_resize_max, coarse_matches_im1, norm=True)
crops1, crops2 = [], []
crops_v1, crops_p1 = [], []
to_orig1, to_orig2 = [], []
map_resolution = get_HW_resolution(HM, WM, maxdim=maxdim, patchsize=model.patch_embed.patch_size)
for crop_q, crop_b, pair_tag in select_pairs_of_crops(map_rgb_tensor,
query_rgb_tensor,
coarse_matches_im1,
coarse_matches_im0,
maxdim=maxdim,
overlap=.5,
forced_resolution=[map_resolution,
query_resolution]):
# Per crop processing
if not args.c2f_crop_with_homography:
map_K = None
query_K = None
c1, v1, p1, trf1 = crop(map_rgb_tensor, valid_all, pts3d, crop_q, map_K)
c2, _, _, trf2 = crop(query_rgb_tensor, None, None, crop_b, query_K)
crops1.append(c1)
crops2.append(c2)
crops_v1.append(v1)
crops_p1.append(p1)
to_orig1.append(trf1)
to_orig2.append(trf2)
if len(crops1) == 0 or len(crops2) == 0:
valid_pts3d, matches_im_query, matches_im_map, matches_conf = [], [], [], []
else:
crops1, crops2 = torch.stack(crops1), torch.stack(crops2)
if len(crops1.shape) == 3:
crops1, crops2 = crops1[None], crops2[None]
crops_v1 = torch.stack(crops_v1)
crops_p1 = torch.stack(crops_p1)
to_orig1, to_orig2 = torch.stack(to_orig1), torch.stack(to_orig2)
map_crop_view = dict(img=crops1.permute(0, 3, 1, 2),
instance=['1' for _ in range(crops1.shape[0])],
valid=crops_v1, pts3d=crops_p1,
to_orig=to_orig1)
query_crop_view = dict(img=crops2.permute(0, 3, 1, 2),
instance=['2' for _ in range(crops2.shape[0])],
to_orig=to_orig2)
# Inference and Matching
valid_pts3d, matches_im_query, matches_im_map, matches_conf = fine_matching(query_crop_view,
map_crop_view,
model, device,
args.max_batch_size,
args.pixel_tol,
fast_nn_params)
matches_im_query = geotrf(query_to_orig_max, matches_im_query, norm=True)
matches_im_map = geotrf(map_to_orig_max, matches_im_map, norm=True)
else:
# use only valid 2d points
valid_pts3d, matches_im_query, matches_im_map, matches_conf = coarse_matching(query_view, map_view,
model, device,
args.pixel_tol,
fast_nn_params)
if cache_file is not None:
mkdir_for(cache_file)
np.savez(cache_file, valid_pts3d=valid_pts3d, matches_im_query=matches_im_query,
matches_im_map=matches_im_map, matches_conf=matches_conf)
# apply conf
if len(matches_conf) > 0:
mask = matches_conf >= conf_thr
valid_pts3d = valid_pts3d[mask]
matches_im_query = matches_im_query[mask]
matches_im_map = matches_im_map[mask]
matches_conf = matches_conf[mask]
# visualize a few matches
if viz_matches > 0:
num_matches = matches_im_map.shape[0]
print(f'found {num_matches} matches')
viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])]
from matplotlib import pyplot as pl
n_viz = viz_matches
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int)
viz_matches_im_query = matches_im_query[match_idx_to_viz]
viz_matches_im_map = matches_im_map[match_idx_to_viz]
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2]
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im_query[i].T, viz_matches_im_map[i].T
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
if len(valid_pts3d) == 0:
pass
else:
query_pts3d.append(valid_pts3d)
query_pts2d.append(matches_im_query)
if len(query_pts2d) == 0:
success = False
pr_querycam_to_world = None
else:
query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32)
query_pts3d = np.concatenate(query_pts3d, axis=0)
if len(query_pts2d) > pnp_max_points:
idxs = random.sample(range(len(query_pts2d)), pnp_max_points)
query_pts3d = query_pts3d[idxs]
query_pts2d = query_pts2d[idxs]
W, H = query_view['rgb'].size
if reprojection_error_diag_ratio is not None:
reprojection_error_img = reprojection_error_diag_ratio * math.sqrt(W**2 + H**2)
else:
reprojection_error_img = reprojection_error
success, pr_querycam_to_world = run_pnp(query_pts2d, query_pts3d,
query_view['intrinsics'], query_view['distortion'],
pnp_mode, reprojection_error_img, img_size=[W, H])
if not success:
abs_transl_error = float('inf')
abs_angular_error = float('inf')
else:
abs_transl_error, abs_angular_error = get_pose_error(pr_querycam_to_world, query_view['cam_to_world'])
pose_errors.append(abs_transl_error)
angular_errors.append(abs_angular_error)
poses_pred.append(pr_querycam_to_world)
xp_label = params_str + f'_conf_{conf_thr}'
if args.output_label:
xp_label = args.output_label + "_" + xp_label
if reprojection_error_diag_ratio is not None:
xp_label = xp_label + f'_reproj_diag_{reprojection_error_diag_ratio}'
else:
xp_label = xp_label + f'_reproj_err_{reprojection_error}'
export_results(args.output_dir, xp_label, query_names, poses_pred)
out_string = aggregate_stats(f'{args.dataset}', pose_errors, angular_errors)
print(out_string)
|