File size: 3,180 Bytes
4d4dd90
 
40c4807
4d4dd90
 
 
 
40c4807
4d4dd90
 
 
40c4807
4d4dd90
2507d2f
0bc7901
4d4dd90
 
0bc7901
 
4d4dd90
 
 
 
 
40c4807
 
 
 
 
0bc7901
40c4807
 
4d4dd90
40c4807
4d4dd90
2507d2f
0bc7901
 
 
 
 
5e02733
0bc7901
5e02733
0bc7901
 
5e02733
0bc7901
5e02733
 
 
 
 
 
 
 
0bc7901
5e02733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc7901
5e02733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc7901
 
 
 
 
 
 
 
4d4dd90
 
 
 
0bc7901
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import cv2
import warnings
import numpy as np
from pathlib import Path
from hloc import logger
from common.utils import (
    get_matcher_zoo,
    load_config,
    device,
    ROOT,
)
from common.api import ImageMatchingAPI


def test_all(config: dict = None):
    img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
    img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
    image0 = cv2.imread(str(img_path1))[:, :, ::-1]  # RGB
    image1 = cv2.imread(str(img_path2))[:, :, ::-1]  # RGB

    matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"])
    for k, v in matcher_zoo_restored.items():
        if image0 is None or image1 is None:
            logger.error("Error: No images found! Please upload two images.")
        enable = config["matcher_zoo"][k].get("enable", True)
        if enable:
            logger.info(f"Testing {k} ...")
            api = ImageMatchingAPI(conf=v, device=device)
            api(image0, image1)
            log_path = ROOT / "experiments" / "all"
            log_path.mkdir(exist_ok=True, parents=True)
            api.visualize(log_path=log_path)
        else:
            logger.info(f"Skipping {k} ...")


def test_one():
    img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
    img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
    image0 = cv2.imread(str(img_path1))[:, :, ::-1]  # RGB
    image1 = cv2.imread(str(img_path2))[:, :, ::-1]  # RGB
    # sparse
    conf = {
        "dense": False,
        "matcher": {
            "model": {
                "name": "NN-mutual",
                "match_threshold": 0.2,
            }
        },
        "feature": {
            "model": {
                "name": "xfeat",
                "max_keypoints": 1024,
                "keypoint_threshold": 0.015,
            }
        },
        "ransac": {
            "enable": True,
            "estimator": "poselib",
            "geometry": "homography",
            "method": "RANSAC",
            "reproj_threshold": 3,
            "confidence": 0.9999,
            "max_iter": 10000,
        },
    }
    api = ImageMatchingAPI(conf=conf, device=device)
    api(image0, image1)
    log_path = ROOT / "experiments" / "one"
    log_path.mkdir(exist_ok=True, parents=True)
    api.visualize(log_path=log_path)

    # dense
    conf = {
        "dense": True,
        "matcher": {
            "model": {
                "name": "loftr",
                "match_threshold": 0.2,
            }
        },
        "feature": {},
        "ransac": {
            "enable": True,
            "estimator": "poselib",
            "geometry": "homography",
            "method": "RANSAC",
            "reproj_threshold": 3,
            "confidence": 0.9999,
            "max_iter": 10000,
        },
    }
    api = ImageMatchingAPI(conf=conf, device=device)
    api(image0, image1)
    log_path = ROOT / "experiments" / "one"
    log_path.mkdir(exist_ok=True, parents=True)
    api.visualize(log_path=log_path)


if __name__ == "__main__":
    import argparse

    config = load_config(ROOT / "common/config.yaml")
    test_one()
    test_all(config)