Spaces:
Sleeping
Sleeping
File size: 5,510 Bytes
2eaeef9 2673dcd 2eaeef9 2673dcd 2eaeef9 2673dcd 2eaeef9 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd c74a070 2673dcd 2eaeef9 c74a070 2673dcd c74a070 2673dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import collections.abc as collections
from pathlib import Path
from types import SimpleNamespace
from typing import Callable, List, Optional, Tuple, Union
import cv2
import kornia
import numpy as np
import torch
class ImagePreprocessor:
default_conf = {
"resize": None, # target edge length, None for no resizing
"side": "long",
"interpolation": "bilinear",
"align_corners": None,
"antialias": True,
}
def __init__(self, **conf) -> None:
super().__init__()
self.conf = {**self.default_conf, **conf}
self.conf = SimpleNamespace(**self.conf)
def __call__(self, img: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Resize and preprocess an image, return image and resize scale"""
h, w = img.shape[-2:]
if self.conf.resize is not None:
img = kornia.geometry.transform.resize(
img,
self.conf.resize,
side=self.conf.side,
antialias=self.conf.antialias,
align_corners=self.conf.align_corners,
)
scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
return img, scale
def map_tensor(input_, func: Callable):
string_classes = (str, bytes)
if isinstance(input_, string_classes):
return input_
elif isinstance(input_, collections.Mapping):
return {k: map_tensor(sample, func) for k, sample in input_.items()}
elif isinstance(input_, collections.Sequence):
return [map_tensor(sample, func) for sample in input_]
elif isinstance(input_, torch.Tensor):
return func(input_)
else:
return input_
def batch_to_device(batch: dict, device: str = "cpu", non_blocking: bool = True):
"""Move batch (dict) to device"""
def _func(tensor):
return tensor.to(device=device, non_blocking=non_blocking).detach()
return map_tensor(batch, _func)
def rbd(data: dict) -> dict:
"""Remove batch dimension from elements in data"""
return {
k: v[0] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v
for k, v in data.items()
}
def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
"""Read an image from path as RGB or grayscale"""
if not Path(path).exists():
raise FileNotFoundError(f"No image at path {path}.")
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
image = cv2.imread(str(path), mode)
if image is None:
raise IOError(f"Could not read image at {path}.")
if not grayscale:
image = image[..., ::-1]
return image
def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
"""Normalize the image tensor and reorder the dimensions."""
if image.ndim == 3:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
elif image.ndim == 2:
image = image[None] # add channel axis
else:
raise ValueError(f"Not an image: {image.shape}")
return torch.tensor(image / 255.0, dtype=torch.float)
def resize_image(
image: np.ndarray,
size: Union[List[int], int],
fn: str = "max",
interp: Optional[str] = "area",
) -> np.ndarray:
"""Resize an image to a fixed size, or according to max or min edge."""
h, w = image.shape[:2]
fn = {"max": max, "min": min}[fn]
if isinstance(size, int):
scale = size / fn(h, w)
h_new, w_new = int(round(h * scale)), int(round(w * scale))
scale = (w_new / w, h_new / h)
elif isinstance(size, (tuple, list)):
h_new, w_new = size
scale = (w_new / w, h_new / h)
else:
raise ValueError(f"Incorrect new size: {size}")
mode = {
"linear": cv2.INTER_LINEAR,
"cubic": cv2.INTER_CUBIC,
"nearest": cv2.INTER_NEAREST,
"area": cv2.INTER_AREA,
}[interp]
return cv2.resize(image, (w_new, h_new), interpolation=mode), scale
def load_image(path: Path, resize: int = None, **kwargs) -> torch.Tensor:
image = read_image(path)
if resize is not None:
image, _ = resize_image(image, resize, **kwargs)
return numpy_image_to_torch(image)
class Extractor(torch.nn.Module):
def __init__(self, **conf):
super().__init__()
self.conf = SimpleNamespace(**{**self.default_conf, **conf})
@torch.no_grad()
def extract(self, img: torch.Tensor, **conf) -> dict:
"""Perform extraction with online resizing"""
if img.dim() == 3:
img = img[None] # add batch dim
assert img.dim() == 4 and img.shape[0] == 1
shape = img.shape[-2:][::-1]
img, scales = ImagePreprocessor(**{**self.preprocess_conf, **conf})(img)
feats = self.forward({"image": img})
feats["image_size"] = torch.tensor(shape)[None].to(img).float()
feats["keypoints"] = (feats["keypoints"] + 0.5) / scales[None] - 0.5
return feats
def match_pair(
extractor,
matcher,
image0: torch.Tensor,
image1: torch.Tensor,
device: str = "cpu",
**preprocess,
):
"""Match a pair of images (image0, image1) with an extractor and matcher"""
feats0 = extractor.extract(image0, **preprocess)
feats1 = extractor.extract(image1, **preprocess)
matches01 = matcher({"image0": feats0, "image1": feats1})
data = [feats0, feats1, matches01]
# remove batch dim and move to target device
feats0, feats1, matches01 = [batch_to_device(rbd(x), device) for x in data]
return feats0, feats1, matches01
|