Spaces:
Sleeping
Sleeping
File size: 12,435 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
<p align="center">
<a href="README.md"><img src="https://img.shields.io/badge/English-white" alt='English'></a>
<a href="README.zh-CN-simplified.md"><img src="https://img.shields.io/badge/%E4%B8%AD%E6%96%87-white" alt='Chinese'></a>
</p>
<h2 align="center">GIM: Learning Generalizable Image Matcher From Internet Videos</h2>
<div align="center">
<a href="https://www.youtube.com/embed/FU_MJLD8LeY">
<img src="assets/demo/video.png" width="50%" alt="Overview Video">
</a>
</div>
<p></p>
<div align="center">
<a href="https://iclr.cc/Conferences/2024"><img src="https://img.shields.io/badge/%F0%9F%8C%9F_ICLR'2024_Spotlight-37414c" alt='ICLR 2024 Spotlight'></a>
<a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Project_Page-3A464E?logo=gumtree" alt='Project Page'></a>
<a href="https://arxiv.org/abs/2402.11095"><img src="https://img.shields.io/badge/arXiv-2402.11095-b31b1b?logo=arxiv" alt='arxiv'></a>
<a href="https://huggingface.co/spaces/xuelunshen/gim-online"><img src="https://img.shields.io/badge/%F0%9F%A4%97_Hugging_Face-Space-F0CD4B?labelColor=666EEE" alt='HuggingFace Space'></a>
<a href="https://www.youtube.com/watch?v=FU_MJLD8LeY"><img src="https://img.shields.io/badge/Overview_Video-E33122?logo=Youtube" alt='Overview Video'></a>
![GitHub Repo stars](https://img.shields.io/github/stars/xuelunshen/gim?style=social)
<!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/📊_Zero--shot_Image_Matching_Evaluation Benchmark-75BC66" alt='Zero-shot Evaluation Benchmark'></a> -->
<!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Source_Code-black?logo=Github" alt='Github Source Code'></a> -->
<a href="https://en.xmu.edu.cn"><img src="https://img.shields.io/badge/Xiamen_University-183F9D?logo=Google%20Scholar&logoColor=white" alt='Intel'></a>
<a href="https://www.intel.com"><img src="https://img.shields.io/badge/Labs-0071C5?logo=intel" alt='Intel'></a>
<a href="https://www.dji.com"><img src="https://img.shields.io/badge/DJI-131313?logo=DJI" alt='Intel'></a>
</div>
| | <div align="left">Method</div> | <div align="left">Mean<br />AUC@5°<br />(%) ↑</div> | GL3 | BLE | ETI | ETO | KIT | WEA | SEA | NIG | MUL | SCE | ICL | GTA |
| ---- | ------------------------------------------------------------ | --------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| | | Handcrafted | | | | | | | | | | | | |
| | RootSIFT | 31.8 | 43.5 | 33.6 | 49.9 | 48.7 | 35.2 | 21.4 | 44.1 | 14.7 | 33.4 | 7.6 | 14.8 | 35.1 |
| | | Sparse Matching | | | | | | | | | | | | |
| | [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork) (in) | 21.6 | 19.2 | 16.0 | 38.2 | 37.7 | 22.0 | 20.8 | 40.8 | 13.7 | 21.4 | 0.8 | 9.6 | 18.8 |
| | SuperGlue (out) | 31.2 | 29.7 | 24.2 | 52.3 | 59.3 | 28.0 | 28.4 | 48.0 | 20.9 | 33.4 | 4.5 | 16.6 | 29.3 |
| | **GIM_SuperGlue**<br />(50h) | 34.3 | 43.2 | 34.2 | 58.7 | 61.0 | 29.0 | 28.3 | 48.4 | 18.8 | 34.8 | 2.8 | 15.4 | 36.5 |
| | [LightGlue](https://github.com/cvg/LightGlue) | 31.7 | 28.9 | 23.9 | 51.6 | 56.3 | 32.1 | 29.5 | 48.9 | 22.2 | 37.4 | 3.0 | 16.2 | 30.4 |
| ✅ | **GIM_LightGlue**<br />(100h) | **38.3** | **46.6** | **38.1** | **61.7** | **62.9** | **34.9** | **31.2** | **50.6** | **22.6** | **41.8** | **6.9** | **19.0** | **43.4** |
| | | Semi-dense Matching | | | | | | | | | | | | |
| | [LoFTR](https://github.com/zju3dv/LoFTR) (in) | 10.7 | 5.6 | 5.1 | 11.8 | 7.5 | 17.2 | 6.4 | 9.7 | 3.5 | 22.4 | 1.3 | 14.9 | 23.4 |
| | LoFTR (out) | 33.1 | 29.3 | 22.5 | 51.1 | 60.1 | **36.1** | **29.7** | **48.6** | **19.4** | 37.0 | **13.1** | 20.5 | 30.3 |
| | **GIM_LoFTR**<br />(50h) | **39.1** | **50.6** | **43.9** | **62.6** | **61.6** | 35.9 | 26.8 | 47.5 | 17.6 | **41.4** | 10.2 | **25.6** | **45.0** |
| 🟩 | **GIM_LoFTR**<br />(100h) | ToDO | | | | | | | | | | | | |
| | | Dense Matching | | | | | | | | | | | | |
| | [DKM](https://github.com/Parskatt/DKM) (in) | 46.2 | 44.4 | 37.0 | 65.7 | 73.3 | 40.2 | 32.8 | 51.0 | 23.1 | 54.7 | 33.0 | **43.6** | 55.7 |
| | DKM (out) | 45.8 | 45.7 | 37.0 | 66.8 | 75.8 | 41.7 | 33.5 | 51.4 | 22.9 | 56.3 | 27.3 | 37.8 | 52.9 |
| | **GIM_DKM**<br />(50h) | 49.4 | 58.3 | 47.8 | 72.7 | 74.5 | 42.1 | **34.6** | 52.0 | **25.1** | 53.7 | 32.3 | 38.8 | 60.6 |
| ✅ | **GIM_DKM**<br />(100h) | **51.2** | **63.3** | **53.0** | **73.9** | 76.7 | **43.4** | **34.6** | **52.5** | 24.5 | 56.6 | 32.2 | 42.5 | **61.6** |
| | [RoMa](https://github.com/Parskatt/RoMa) (in) | 46.7 | 46.0 | 39.3 | 68.8 | 77.2 | 36.5 | 31.1 | 50.4 | 20.8 | 57.8 | **33.8** | 41.7 | 57.6 |
| | RoMa (out) | 48.8 | 48.3 | 40.6 | 73.6 | **79.8** | 39.9 | 34.4 | 51.4 | 24.2 | **59.9** | 33.7 | 41.3 | 59.2 |
| 🟩 | **GIM_RoMa** | ToDO | | | | | | | | | | | | |
> The data in this table comes from the **ZEB**: <u>Zero-shot Evaluation Benchmark for Image Matching</u> proposed in the paper. This benchmark consists of 12 public datasets that cover a variety of scenes, weather conditions, and camera models, corresponding to the 12 test sequences starting from GL3 in the table. We will release **ZEB** as soon as possible.
## ✅ TODO List
- [ ] Inference code
- [ ] gim_roma
- [x] gim_dkm
- [ ] gim_loftr
- [x] gim_lightglue
- [ ] Training code
> We are actively continuing with the remaining open-source work and appreciate everyone's attention.
## 🤗 Online demo
Go to [Huggingface](https://huggingface.co/spaces/xuelunshen/gim-online) to quickly try our model online.
## ⚙️ Environment
I set up the running environment on a new machine using the commands listed below.
```bash
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install albumentations==1.0.1 --no-binary=imgaug,albumentations
pip install pytorch-lightning==1.5.10
pip install opencv-python==4.5.3.56
pip install imagesize==1.2.0
pip install kornia==0.6.10
pip install einops==0.3.0
pip install loguru==0.5.3
pip install joblib==1.0.1
pip install yacs==0.1.8
pip install h5py==3.1.0
```
## 🔨 Usage
Clone the repository
```bash
git clone https://github.com/xuelunshen/gim.git
cd gim
```
Download `gim_dkm` model weight from [Google Drive](https://drive.google.com/file/d/1gk97V4IROnR1Nprq10W9NCFUv2mxXR_-/view?usp=sharing)
Put it on the folder `weights`
Run the following command
```bash
python demo.py --model gim_dkm
```
or
```bash
python demo.py --model gim_lightglue
```
The code will match `a1.png` and `a2.png` in the folder `assets/demo`</br>, and output `a1_a2_match.png` and `a1_a2_warp.png`.
<details>
<summary>
Click to show
<code>a1.png</code>
and
<code>a2.png</code>.
</summary>
<p float="left">
<img src="assets/demo/a1.png" width="25%" />
<img src="assets/demo/a2.png" width="25%" />
</p>
</details>
<details>
<summary>
Click to show
<code>a1_a2_match.png</code>.
</summary>
<p align="left">
<img src="assets/demo/_a1_a2_match.png" width="50%">
</p>
<p><code>a1_a2_match.png</code> is a visualization of the match between the two images</p>
</details>
<details>
<summary>
Click to show
<code>a1_a2_warp.png</code>.
</summary>
<p align="left">
<img src="assets/demo/_a1_a2_warp.png" width="50%">
</p>
<p><code>a1_a2_warp.png</code> shows the effect of projecting <code>image a2</code> onto <code>image a1</code> using homography</p>
</details>
There are more images in the `assets/demo` folder, you can try them out.
<details>
<summary>
Click to show other images.
</summary>
<p float="left">
<img src="assets/demo/b1.png" width="15%" />
<img src="assets/demo/b2.png" width="15%" />
<img src="assets/demo/c1.png" width="15%" />
<img src="assets/demo/c2.png" width="15%" />
<img src="assets/demo/d1.png" width="15%" />
<img src="assets/demo/d2.png" width="15%" />
</p>
</details>
## 📌 Citation
If the paper and code from `gim` help your research, we kindly ask you to give a citation to our paper ❤️. Additionally, if you appreciate our work and find this repository useful, giving it a star ⭐️ would be a wonderful way to support our work. Thank you very much.
```bibtex
@inproceedings{
xuelun2024gim,
title={GIM: Learning Generalizable Image Matcher From Internet Videos},
author={Xuelun Shen and Zhipeng Cai and Wei Yin and Matthias Müller and Zijun Li and Kaixuan Wang and Xiaozhi Chen and Cheng Wang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}
```
## 🌟 Star History
<a href="https://star-history.com/#xuelunshen/gim&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date" />
</picture>
</a>
## License
This repository is under the MIT License. This content/model is provided here for research purposes only. Any use beyond this is your sole responsibility and subject to your securing the necessary rights for your purpose.
|