Spaces:
Sleeping
Sleeping
File size: 28,171 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
"""
This file implements the synthetic shape dataset object for pytorch
"""
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import math
import h5py
import pickle
import torch
import numpy as np
import cv2
from tqdm import tqdm
from torchvision import transforms
from torch.utils.data import Dataset
import torch.utils.data.dataloader as torch_loader
from ..config.project_config import Config as cfg
from . import synthetic_util
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from ..misc.train_utils import parse_h5_data
def synthetic_collate_fn(batch):
"""Customized collate_fn."""
batch_keys = ["image", "junction_map", "heatmap", "valid_mask", "homography"]
list_keys = ["junctions", "line_map", "file_key"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ in data_key for _ in batch_keys])
list_match = sum([_ in data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate(
[b[data_key] for b in batch]
)
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError(
"[Error] A key matches batch keys and list keys simultaneously."
)
return outputs
class SyntheticShapes(Dataset):
"""Dataset of synthetic shapes."""
# Initialize the dataset
def __init__(self, mode="train", config=None):
super(SyntheticShapes, self).__init__()
if not mode in ["train", "val", "test"]:
raise ValueError(
"[Error] Supported dataset modes are 'train', 'val', and 'test'."
)
self.mode = mode
# Get configuration
if config is None:
self.config = self.get_default_config()
else:
self.config = config
# Set all available primitives
self.available_primitives = [
"draw_lines",
"draw_polygon",
"draw_multiple_polygons",
"draw_star",
"draw_checkerboard_multiseg",
"draw_stripes_multiseg",
"draw_cube",
"gaussian_noise",
]
# Some cache setting
self.dataset_name = self.get_dataset_name()
self.cache_name = self.get_cache_name()
self.cache_path = cfg.synthetic_cache_path
# Check if export dataset exists
print("===============================================")
self.filename_dataset, self.datapoints = self.construct_dataset()
self.print_dataset_info()
# Initialize h5 file handle
self.dataset_path = os.path.join(
cfg.synthetic_dataroot, self.dataset_name + ".h5"
)
# Fix the random seed for torch and numpy in testing mode
if (self.mode == "val" or self.mode == "test") and self.config[
"add_augmentation_to_all_splits"
]:
seed = self.config.get("test_augmentation_seed", 200)
np.random.seed(seed)
torch.manual_seed(seed)
# For CuDNN
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
##########################################
## Dataset construction related methods ##
##########################################
def construct_dataset(self):
"""Dataset constructor."""
# Check if the filename cache exists
# If cache exists, load from cache
if self._check_dataset_cache():
print("[Info]: Found filename cache at ...")
print("\t Load filename cache...")
filename_dataset, datapoints = self.get_filename_dataset_from_cache()
print("\t Check if all file exists...")
# If all file exists, continue
if self._check_file_existence(filename_dataset):
print("\t All files exist!")
# If not, need to re-export the synthetic dataset
else:
print(
"\t Some files are missing. Re-export the synthetic shape dataset."
)
self.export_synthetic_shapes()
print("\t Initialize filename dataset")
filename_dataset, datapoints = self.get_filename_dataset()
print("\t Create filename dataset cache...")
self.create_filename_dataset_cache(filename_dataset, datapoints)
# If not, initialize dataset from scratch
else:
print("[Info]: Can't find filename cache ...")
print("\t First check export dataset exists.")
# If export dataset exists, then just update the filename_dataset
if self._check_export_dataset():
print("\t Synthetic dataset exists. Initialize the dataset ...")
# If export dataset does not exist, export from scratch
else:
print(
"\t Synthetic dataset does not exist. Export the synthetic dataset."
)
self.export_synthetic_shapes()
print("\t Initialize filename dataset")
filename_dataset, datapoints = self.get_filename_dataset()
print("\t Create filename dataset cache...")
self.create_filename_dataset_cache(filename_dataset, datapoints)
return filename_dataset, datapoints
def get_cache_name(self):
"""Get cache name from dataset config / default config."""
if self.config["dataset_name"] is None:
dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode
else:
dataset_name = self.config["dataset_name"] + "_%s" % self.mode
# Compose cache name
cache_name = dataset_name + "_cache.pkl"
return cache_name
def get_dataset_name(self):
"""Get dataset name from dataset config / default config."""
if self.config["dataset_name"] is None:
dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode
else:
dataset_name = self.config["dataset_name"] + "_%s" % self.mode
return dataset_name
def get_filename_dataset_from_cache(self):
"""Get filename dataset from cache."""
# Load from the pkl cache
cache_file_path = os.path.join(self.cache_path, self.cache_name)
with open(cache_file_path, "rb") as f:
data = pickle.load(f)
return data["filename_dataset"], data["datapoints"]
def get_filename_dataset(self):
"""Get filename dataset from scratch."""
# Path to the exported dataset
dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5")
filename_dataset = {}
datapoints = []
# Open the h5 dataset
with h5py.File(dataset_path, "r") as f:
# Iterate through all the primitives
for prim_name in f.keys():
filenames = sorted(f[prim_name].keys())
filenames_full = [os.path.join(prim_name, _) for _ in filenames]
filename_dataset[prim_name] = filenames_full
datapoints += filenames_full
return filename_dataset, datapoints
def create_filename_dataset_cache(self, filename_dataset, datapoints):
"""Create filename dataset cache for faster initialization."""
# Check cache path exists
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
cache_file_path = os.path.join(self.cache_path, self.cache_name)
data = {"filename_dataset": filename_dataset, "datapoints": datapoints}
with open(cache_file_path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
def export_synthetic_shapes(self):
"""Export synthetic shapes to disk."""
# Set the global random state for data generation
synthetic_util.set_random_state(
np.random.RandomState(self.config["generation"]["random_seed"])
)
# Define the export path
dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5")
# Open h5py file
with h5py.File(dataset_path, "w", libver="latest") as f:
# Iterate through all types of shape
primitives = self.parse_drawing_primitives(self.config["primitives"])
split_size = self.config["generation"]["split_sizes"][self.mode]
for prim in primitives:
# Create h5 group
group = f.create_group(prim)
# Export single primitive
self.export_single_primitive(prim, split_size, group)
f.swmr_mode = True
def export_single_primitive(self, primitive, split_size, group):
"""Export single primitive."""
# Check if the primitive is valid or not
if primitive not in self.available_primitives:
raise ValueError("[Error]: %s is not a supported primitive" % primitive)
# Set the random seed
synthetic_util.set_random_state(
np.random.RandomState(self.config["generation"]["random_seed"])
)
# Generate shapes
print("\t Generating %s ..." % primitive)
for idx in tqdm(range(split_size), ascii=True):
# Generate background image
image = synthetic_util.generate_background(
self.config["generation"]["image_size"],
**self.config["generation"]["params"]["generate_background"]
)
# Generate points
drawing_func = getattr(synthetic_util, primitive)
kwarg = self.config["generation"]["params"].get(primitive, {})
# Get min_len and min_label_len
min_len = self.config["generation"]["min_len"]
min_label_len = self.config["generation"]["min_label_len"]
# Some only take min_label_len, and gaussian noises take nothing
if primitive in [
"draw_lines",
"draw_polygon",
"draw_multiple_polygons",
"draw_star",
]:
data = drawing_func(
image, min_len=min_len, min_label_len=min_label_len, **kwarg
)
elif primitive in [
"draw_checkerboard_multiseg",
"draw_stripes_multiseg",
"draw_cube",
]:
data = drawing_func(image, min_label_len=min_label_len, **kwarg)
else:
data = drawing_func(image, **kwarg)
# Convert the data
if data["points"] is not None:
points = np.flip(data["points"], axis=1).astype(np.float)
line_map = data["line_map"].astype(np.int32)
else:
points = np.zeros([0, 2]).astype(np.float)
line_map = np.zeros([0, 0]).astype(np.int32)
# Post-processing
blur_size = self.config["preprocessing"]["blur_size"]
image = cv2.GaussianBlur(image, (blur_size, blur_size), 0)
# Resize the image and the point location.
points = (
points
* np.array(self.config["preprocessing"]["resize"], np.float)
/ np.array(self.config["generation"]["image_size"], np.float)
)
image = cv2.resize(
image,
tuple(self.config["preprocessing"]["resize"][::-1]),
interpolation=cv2.INTER_LINEAR,
)
image = np.array(image, dtype=np.uint8)
# Generate the line heatmap after post-processing
junctions = np.flip(np.round(points).astype(np.int32), axis=1)
heatmap = (
synthetic_util.get_line_heatmap(junctions, line_map, size=image.shape)
* 255.0
).astype(np.uint8)
# Record the data in group
num_pad = math.ceil(math.log10(split_size)) + 1
file_key_name = self.get_padded_filename(num_pad, idx)
file_group = group.create_group(file_key_name)
# Store data
file_group.create_dataset("points", data=points, compression="gzip")
file_group.create_dataset("image", data=image, compression="gzip")
file_group.create_dataset("line_map", data=line_map, compression="gzip")
file_group.create_dataset("heatmap", data=heatmap, compression="gzip")
def get_default_config(self):
"""Get default configuration of the dataset."""
# Initialize the default configuration
self.default_config = {
"dataset_name": "synthetic_shape",
"primitives": "all",
"add_augmentation_to_all_splits": False,
# Shape generation configuration
"generation": {
"split_sizes": {"train": 10000, "val": 400, "test": 500},
"random_seed": 10,
"image_size": [960, 1280],
"min_len": 0.09,
"min_label_len": 0.1,
"params": {
"generate_background": {
"min_kernel_size": 150,
"max_kernel_size": 500,
"min_rad_ratio": 0.02,
"max_rad_ratio": 0.031,
},
"draw_stripes": {"transform_params": (0.1, 0.1)},
"draw_multiple_polygons": {"kernel_boundaries": (50, 100)},
},
},
# Date preprocessing configuration.
"preprocessing": {"resize": [240, 320], "blur_size": 11},
"augmentation": {
"photometric": {
"enable": False,
"primitives": "all",
"params": {},
"random_order": True,
},
"homographic": {
"enable": False,
"params": {},
"valid_border_margin": 0,
},
},
}
return self.default_config
def parse_drawing_primitives(self, names):
"""Parse the primitives in config to list of primitive names."""
if names == "all":
p = self.available_primitives
else:
if isinstance(names, list):
p = names
else:
p = [names]
assert set(p) <= set(self.available_primitives)
return p
@staticmethod
def get_padded_filename(num_pad, idx):
"""Get the padded filename using adaptive padding."""
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def print_dataset_info(self):
"""Print dataset info."""
print("\t ---------Summary------------------")
print("\t Dataset mode: \t\t %s" % self.mode)
print("\t Number of primitive: \t %d" % len(self.filename_dataset.keys()))
print("\t Number of data: \t %d" % len(self.datapoints))
print("\t ----------------------------------")
#########################
## Pytorch related API ##
#########################
def get_data_from_datapoint(self, datapoint, reader=None):
"""Get data given the datapoint
(keyname of the h5 dataset e.g. "draw_lines/0000.h5")."""
# Check if the datapoint is valid
if not datapoint in self.datapoints:
raise ValueError(
"[Error] The specified datapoint is not in available datapoints."
)
# Get data from h5 dataset
if reader is None:
raise ValueError("[Error] The reader must be provided in __getitem__.")
else:
data = reader[datapoint]
return parse_h5_data(data)
def get_data_from_signature(self, primitive_name, index):
"""Get data given the primitive name and index ("draw_lines", 10)"""
# Check the primitive name and index
self._check_primitive_and_index(primitive_name, index)
# Get the datapoint from filename dataset
datapoint = self.filename_dataset[primitive_name][index]
return self.get_data_from_datapoint(datapoint)
def parse_transforms(self, names, all_transforms):
trans = (
all_transforms
if (names == "all")
else (names if isinstance(names, list) else [names])
)
assert set(trans) <= set(all_transforms)
return trans
def get_photo_transform(self):
"""Get list of photometric transforms (according to the config)."""
# Get the photometric transform config
photo_config = self.config["augmentation"]["photometric"]
if not photo_config["enable"]:
raise ValueError("[Error] Photometric augmentation is not enabled.")
# Parse photometric transforms
trans_lst = self.parse_transforms(
photo_config["primitives"], photoaug.available_augmentations
)
trans_config_lst = [photo_config["params"].get(p, {}) for p in trans_lst]
# List of photometric augmentation
photometric_trans_lst = [
getattr(photoaug, trans)(**conf)
for (trans, conf) in zip(trans_lst, trans_config_lst)
]
return photometric_trans_lst
def get_homo_transform(self):
"""Get homographic transforms (according to the config)."""
# Get homographic transforms for image
homo_config = self.config["augmentation"]["homographic"]["params"]
if not self.config["augmentation"]["homographic"]["enable"]:
raise ValueError("[Error] Homographic augmentation is not enabled")
# Parse the homographic transforms
# ToDo: use the shape from the config
image_shape = self.config["preprocessing"]["resize"]
# Compute the min_label_len from config
try:
min_label_tmp = self.config["generation"]["min_label_len"]
except:
min_label_tmp = None
# float label len => fraction
if isinstance(min_label_tmp, float): # Skip if not provided
min_label_len = min_label_tmp * min(image_shape)
# int label len => length in pixel
elif isinstance(min_label_tmp, int):
scale_ratio = (
self.config["preprocessing"]["resize"]
/ self.config["generation"]["image_size"][0]
)
min_label_len = self.config["generation"]["min_label_len"] * scale_ratio
# if none => no restriction
else:
min_label_len = 0
# Initialize the transform
homographic_trans = homoaug.homography_transform(
image_shape, homo_config, 0, min_label_len
)
return homographic_trans
@staticmethod
def junc_to_junc_map(junctions, image_size):
"""Convert junction points to junction maps."""
junctions = np.round(junctions).astype(np.int)
# Clip the boundary by image size
junctions[:, 0] = np.clip(junctions[:, 0], 0.0, image_size[0] - 1)
junctions[:, 1] = np.clip(junctions[:, 1], 0.0, image_size[1] - 1)
# Create junction map
junc_map = np.zeros([image_size[0], image_size[1]])
junc_map[junctions[:, 0], junctions[:, 1]] = 1
return junc_map[..., None].astype(np.int)
def train_preprocessing(self, data, disable_homoaug=False):
"""Training preprocessing."""
# Fetch corresponding entries
image = data["image"]
junctions = data["points"]
line_map = data["line_map"]
heatmap = data["heatmap"]
image_size = image.shape[:2]
# Resize the image before the photometric and homographic transforms
# Check if we need to do the resizing
if not (list(image.shape) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)
image = cv2.resize(
image,
tuple(self.config["preprocessing"]["resize"][::-1]),
interpolation=cv2.INTER_LINEAR,
)
image = np.array(image, dtype=np.uint8)
junctions = (
junctions
* np.array(self.config["preprocessing"]["resize"], np.float)
/ np.array(size_old, np.float)
)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
heatmap = synthetic_util.get_line_heatmap(
junctions_xy, line_map, size=image.shape
)
heatmap = (heatmap * 255.0).astype(np.uint8)
# Update image size
image_size = image.shape[:2]
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
# Check if we need to apply augmentations
# In training mode => yes.
# In homography adaptation mode (export mode) => No
# Check photometric augmentation
if self.config["augmentation"]["photometric"]["enable"]:
photo_trans_lst = self.get_photo_transform()
### Image transform ###
np.random.shuffle(photo_trans_lst)
image_transform = transforms.Compose(
photo_trans_lst + [photoaug.normalize_image()]
)
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Initialize the empty output dict
outputs = {}
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
# Check homographic augmentation
if (
self.config["augmentation"]["homographic"]["enable"]
and disable_homoaug == False
):
homo_trans = self.get_homo_transform()
# Perform homographic transform
homo_outputs = homo_trans(image, junctions, line_map)
# Record the warped results
junctions = homo_outputs["junctions"] # Should be HW format
image = homo_outputs["warped_image"]
line_map = homo_outputs["line_map"]
heatmap = homo_outputs["warped_heatmap"]
valid_mask = homo_outputs["valid_mask"] # Same for pos and neg
homography_mat = homo_outputs["homo"]
# Optionally put warpping information first.
outputs["homography_mat"] = to_tensor(homography_mat).to(torch.float32)[
0, ...
]
junction_map = self.junc_to_junc_map(junctions, image_size)
outputs.update(
{
"image": to_tensor(image),
"junctions": to_tensor(np.ascontiguousarray(junctions).copy()).to(
torch.float32
)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32),
}
)
return outputs
def test_preprocessing(self, data):
"""Test preprocessing."""
# Fetch corresponding entries
image = data["image"]
points = data["points"]
line_map = data["line_map"]
heatmap = data["heatmap"]
image_size = image.shape[:2]
# Resize the image before the photometric and homographic transforms
if not (list(image.shape) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)
image = cv2.resize(
image,
tuple(self.config["preprocessing"]["resize"][::-1]),
interpolation=cv2.INTER_LINEAR,
)
image = np.array(image, dtype=np.uint8)
points = (
points
* np.array(self.config["preprocessing"]["resize"], np.float)
/ np.array(size_old, np.float)
)
# Generate the line heatmap after post-processing
junctions = np.flip(np.round(points).astype(np.int32), axis=1)
heatmap = synthetic_util.get_line_heatmap(
junctions, line_map, size=image.shape
)
heatmap = (heatmap * 255.0).astype(np.uint8)
# Update image size
image_size = image.shape[:2]
### image transform ###
image_transform = photoaug.normalize_image()
image = image_transform(image)
### joint transform ###
junction_map = self.junc_to_junc_map(points, image_size)
to_tensor = transforms.ToTensor()
image = to_tensor(image)
junctions = to_tensor(points)
junction_map = to_tensor(junction_map).to(torch.int)
line_map = to_tensor(line_map)
heatmap = to_tensor(heatmap)
valid_mask = to_tensor(np.ones(image_size)).to(torch.int32)
return {
"image": image,
"junctions": junctions,
"junction_map": junction_map,
"line_map": line_map,
"heatmap": heatmap,
"valid_mask": valid_mask,
}
def __getitem__(self, index):
datapoint = self.datapoints[index]
# Initialize reader and use it
with h5py.File(self.dataset_path, "r", swmr=True) as reader:
data = self.get_data_from_datapoint(datapoint, reader)
# Apply different transforms in different mod.
if self.mode == "train" or self.config["add_augmentation_to_all_splits"]:
return_type = self.config.get("return_type", "single")
data = self.train_preprocessing(data)
else:
data = self.test_preprocessing(data)
return data
def __len__(self):
return len(self.datapoints)
########################
## Some other methods ##
########################
def _check_dataset_cache(self):
"""Check if dataset cache exists."""
cache_file_path = os.path.join(self.cache_path, self.cache_name)
if os.path.exists(cache_file_path):
return True
else:
return False
def _check_export_dataset(self):
"""Check if exported dataset exists."""
dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name)
if os.path.exists(dataset_path) and len(os.listdir(dataset_path)) > 0:
return True
else:
return False
def _check_file_existence(self, filename_dataset):
"""Check if all exported file exists."""
# Path to the exported dataset
dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5")
flag = True
# Open the h5 dataset
with h5py.File(dataset_path, "r") as f:
# Iterate through all the primitives
for prim_name in f.keys():
if len(filename_dataset[prim_name]) != len(f[prim_name].keys()):
flag = False
return flag
def _check_primitive_and_index(self, primitive, index):
"""Check if the primitve and index are valid."""
# Check primitives
if not primitive in self.available_primitives:
raise ValueError("[Error] The primitive is not in available primitives.")
prim_len = len(self.filename_dataset[primitive])
# Check the index
if not index < prim_len:
raise ValueError(
"[Error] The index exceeds the total file counts %d for %s"
% (prim_len, primitive)
)
|