Spaces:
Sleeping
Sleeping
File size: 21,671 Bytes
4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 b075789 4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
![demo](assets/dust3r.jpg)
Official implementation of `DUSt3R: Geometric 3D Vision Made Easy`
[[Project page](https://dust3r.europe.naverlabs.com/)], [[DUSt3R arxiv](https://arxiv.org/abs/2312.14132)]
> :warning: **We have removed the checkpoints temporarily**: We apologize for that!
![Example of reconstruction from two images](assets/pipeline1.jpg)
![High level overview of DUSt3R capabilities](assets/dust3r_archi.jpg)
```bibtex
@inproceedings{dust3r_cvpr24,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
booktitle = {CVPR},
year = {2024}
}
@misc{dust3r_arxiv23,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
year={2023},
eprint={2312.14132},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Table of Contents
- [Table of Contents](#table-of-contents)
- [License](#license)
- [Get Started](#get-started)
- [Installation](#installation)
- [Checkpoints](#checkpoints)
- [Interactive demo](#interactive-demo)
- [Interactive demo with docker](#interactive-demo-with-docker)
- [Usage](#usage)
- [Training](#training)
- [Demo](#demo)
- [Our Hyperparameters](#our-hyperparameters)
## License
The code is distributed under the CC BY-NC-SA 4.0 License.
See [LICENSE](LICENSE) for more information.
```python
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
```
## Get Started
### Installation
1. Clone DUSt3R.
```bash
git clone --recursive https://github.com/naver/dust3r
cd dust3r
# if you have already cloned dust3r:
# git submodule update --init --recursive
```
2. Create the environment, here we show an example using conda.
```bash
conda create -n dust3r python=3.11 cmake=3.14.0
conda activate dust3r
conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system
pip install -r requirements.txt
# Optional: you can also install additional packages to:
# - add support for HEIC images
pip install -r requirements_optional.txt
```
3. Optional, compile the cuda kernels for RoPE (as in CroCo v2).
```bash
# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime.
cd croco/models/curope/
python setup.py build_ext --inplace
cd ../../../
```
### Checkpoints
> :warning: **We have removed the checkpoints temporarily**: We apologize for that!
You can obtain the checkpoints by two ways:
1) You can use our huggingface_hub integration: the models will be downloaded automatically.
2) Otherwise, We provide several pre-trained models:
| Modelname | Training resolutions | Head | Encoder | Decoder |
|-------------|----------------------|------|---------|---------|
| [`DUSt3R_ViTLarge_BaseDecoder_224_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_224_linear.pth) | 224x224 | Linear | ViT-L | ViT-B |
| [`DUSt3R_ViTLarge_BaseDecoder_512_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_linear.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | Linear | ViT-L | ViT-B |
| [`DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`]() | 512x384, 512x336, 512x288, 512x256, 512x160 | DPT | ViT-L | ViT-B |
You can check the hyperparameters we used to train these models in the [section: Our Hyperparameters](#our-hyperparameters)
To download a specific model, for example `DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`:
```bash
mkdir -p checkpoints/
wget TODO -P checkpoints/
```
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. Again, see [section: Our Hyperparameters](#our-hyperparameters) for details.
### Interactive demo
In this demo, you should be able run DUSt3R on your machine to reconstruct a scene.
First select images that depicts the same scene.
You can adjust the global alignment schedule and its number of iterations.
> [!NOTE]
> If you selected one or two images, the global alignment procedure will be skipped (mode=GlobalAlignerMode.PairViewer)
Hit "Run" and wait.
When the global alignment ends, the reconstruction appears.
Use the slider "min_conf_thr" to show or remove low confidence areas.
```bash
python3 demo.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt
# Use --weights to load a checkpoint from a local file, eg --weights checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth
# Use --image_size to select the correct resolution for the selected checkpoint. 512 (default) or 224
# Use --local_network to make it accessible on the local network, or --server_name to specify the url manually
# Use --server_port to change the port, by default it will search for an available port starting at 7860
# Use --device to use a different device, by default it's "cuda"
```
### Interactive demo with docker
To run DUSt3R using Docker, including with NVIDIA CUDA support, follow these instructions:
1. **Install Docker**: If not already installed, download and install `docker` and `docker compose` from the [Docker website](https://www.docker.com/get-started).
2. **Install NVIDIA Docker Toolkit**: For GPU support, install the NVIDIA Docker toolkit from the [Nvidia website](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
3. **Build the Docker image and run it**: `cd` into the `./docker` directory and run the following commands:
```bash
cd docker
bash run.sh --with-cuda --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt"
```
Or if you want to run the demo without CUDA support, run the following command:
```bash
cd docker
bash run.sh --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt"
```
By default, `demo.py` is lanched with the option `--local_network`.
Visit `http://localhost:7860/` to access the web UI (or replace `localhost` with the machine's name to access it from the network).
`run.sh` will launch docker-compose using either the [docker-compose-cuda.yml](docker/docker-compose-cuda.yml) or [docker-compose-cpu.ym](docker/docker-compose-cpu.yml) config file, then it starts the demo using [entrypoint.sh](docker/files/entrypoint.sh).
![demo](assets/demo.jpg)
## Usage
```python
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
if __name__ == '__main__':
device = 'cuda'
batch_size = 1
schedule = 'cosine'
lr = 0.01
niter = 300
model_name = "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
# you can put the path to a local checkpoint in model_name if needed
model = AsymmetricCroCo3DStereo.from_pretrained(model_name).to(device)
# load_images can take a list of images or a directory
images = load_images(['croco/assets/Chateau1.png', 'croco/assets/Chateau2.png'], size=512)
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=batch_size)
# at this stage, you have the raw dust3r predictions
view1, pred1 = output['view1'], output['pred1']
view2, pred2 = output['view2'], output['pred2']
# here, view1, pred1, view2, pred2 are dicts of lists of len(2)
# -> because we symmetrize we have (im1, im2) and (im2, im1) pairs
# in each view you have:
# an integer image identifier: view1['idx'] and view2['idx']
# the img: view1['img'] and view2['img']
# the image shape: view1['true_shape'] and view2['true_shape']
# an instance string output by the dataloader: view1['instance'] and view2['instance']
# pred1 and pred2 contains the confidence values: pred1['conf'] and pred2['conf']
# pred1 contains 3D points for view1['img'] in view1['img'] space: pred1['pts3d']
# pred2 contains 3D points for view2['img'] in view1['img'] space: pred2['pts3d_in_other_view']
# next we'll use the global_aligner to align the predictions
# depending on your task, you may be fine with the raw output and not need it
# with only two input images, you could use GlobalAlignerMode.PairViewer: it would just convert the output
# if using GlobalAlignerMode.PairViewer, no need to run compute_global_alignment
scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr)
# retrieve useful values from scene:
imgs = scene.imgs
focals = scene.get_focals()
poses = scene.get_im_poses()
pts3d = scene.get_pts3d()
confidence_masks = scene.get_masks()
# visualize reconstruction
scene.show()
# find 2D-2D matches between the two images
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid
pts2d_list, pts3d_list = [], []
for i in range(2):
conf_i = confidence_masks[i].cpu().numpy()
pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W)
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])
reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list)
print(f'found {num_matches} matches')
matches_im1 = pts2d_list[1][reciprocal_in_P2]
matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]
# visualize a few matches
import numpy as np
from matplotlib import pyplot as pl
n_viz = 10
match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int)
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]
H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]
img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
```
![matching example on croco pair](assets/matching.jpg)
## Training
In this section, we present a short demonstration to get started with training DUSt3R.
At the moment, we didn't release the training datasets, so we're going to download and prepare a subset of [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) and launch the training code on it.
The demo model will be trained for a few epochs on a very small dataset.
It will not be very good.
### Demo
```bash
# download and prepare the co3d subset
mkdir -p data/co3d_subset
cd data/co3d_subset
git clone https://github.com/facebookresearch/co3d
cd co3d
python3 ./co3d/download_dataset.py --download_folder ../ --single_sequence_subset
rm ../*.zip
cd ../../..
python3 datasets_preprocess/preprocess_co3d.py --co3d_dir data/co3d_subset --output_dir data/co3d_subset_processed --single_sequence_subset
# download the pretrained croco v2 checkpoint
mkdir -p checkpoints/
wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth -P checkpoints/
# the training of dust3r is done in 3 steps.
# for this example we'll do fewer epochs, for the actual hyperparameters we used in the paper, see the next section: "Our Hyperparameters"
# step 1 - train dust3r for 224 resolution
torchrun --nproc_per_node=4 train.py \
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter)" \
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=224, seed=777)" \
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--pretrained "checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 16 --accum_iter 1 \
--save_freq 1 --keep_freq 5 --eval_freq 1 \
--output_dir "checkpoints/dust3r_demo_224"
# step 2 - train dust3r for 512 resolution
torchrun --nproc_per_node=4 train.py \
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--pretrained "checkpoints/dust3r_demo_224/checkpoint-best.pth" \
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 4 --accum_iter 4 \
--save_freq 1 --keep_freq 5 --eval_freq 1 \
--output_dir "checkpoints/dust3r_demo_512"
# step 3 - train dust3r for 512 resolution with dpt
torchrun --nproc_per_node=4 train.py \
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--pretrained "checkpoints/dust3r_demo_512/checkpoint-best.pth" \
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 2 --accum_iter 8 \
--save_freq 1 --keep_freq 5 --eval_freq 1 \
--output_dir "checkpoints/dust3r_demo_512dpt"
```
### Our Hyperparameters
We didn't release the training datasets, but here are the commands we used for training our models:
```bash
# NOTE: ROOT path omitted for datasets
# 224 linear
torchrun --nproc_per_node 8 train.py \
--train_dataset=" + 100_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ BlendedMVS(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ MegaDepth(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ ARKitScenes(aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ ScanNetpp(split='train', aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=224, transform=ColorJitter) " \
--test_dataset=" Habitat(1_000, split='val', resolution=224, seed=777) + 1_000 @ BlendedMVS(split='val', resolution=224, seed=777) + 1_000 @ MegaDepth(split='val', resolution=224, seed=777) + 1_000 @ Co3d(split='test', mask_bg='rand', resolution=224, seed=777) " \
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--pretrained="checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=10 --epochs=100 --batch_size=16 --accum_iter=1 \
--save_freq=5 --keep_freq=10 --eval_freq=1 \
--output_dir="checkpoints/dust3r_224"
# 512 linear
torchrun --nproc_per_node 8 train.py \
--train_dataset=" + 10_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepth(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \
--test_dataset=" Habitat(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepth(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d(split='test', resolution=(512,384), seed=777) " \
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--pretrained="checkpoints/dust3r_224/checkpoint-best.pth" \
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=20 --epochs=100 --batch_size=4 --accum_iter=2 \
--save_freq=10 --keep_freq=10 --eval_freq=1 --print_freq=10 \
--output_dir="checkpoints/dust3r_512"
# 512 dpt
torchrun --nproc_per_node 8 train.py \
--train_dataset=" + 10_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepth(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \
--test_dataset=" Habitat(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepth(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d(split='test', resolution=(512,384), seed=777) " \
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \
--pretrained="checkpoints/dust3r_512/checkpoint-best.pth" \
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=15 --epochs=90 --batch_size=4 --accum_iter=2 \
--save_freq=5 --keep_freq=10 --eval_freq=1 --print_freq=10 \
--output_dir="checkpoints/dust3r_512dpt"
```
|