Spaces:
Sleeping
Sleeping
File size: 8,395 Bytes
2eaeef9 8320ccc 2eaeef9 8320ccc 2eaeef9 8320ccc 2eaeef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import warnings
import cv2
import numpy as np
import torch
from kornia.color import rgb_to_grayscale
from omegaconf import OmegaConf
from packaging import version
try:
import pycolmap
except ImportError:
pycolmap = None
from hloc import logger
from ..utils.base_model import BaseModel
def filter_dog_point(
points, scales, angles, image_shape, nms_radius, scores=None
):
h, w = image_shape
ij = np.round(points - 0.5).astype(int).T[::-1]
# Remove duplicate points (identical coordinates).
# Pick highest scale or score
s = scales if scores is None else scores
buffer = np.zeros((h, w))
np.maximum.at(buffer, tuple(ij), s)
keep = np.where(buffer[tuple(ij)] == s)[0]
# Pick lowest angle (arbitrary).
ij = ij[:, keep]
buffer[:] = np.inf
o_abs = np.abs(angles[keep])
np.minimum.at(buffer, tuple(ij), o_abs)
mask = buffer[tuple(ij)] == o_abs
ij = ij[:, mask]
keep = keep[mask]
if nms_radius > 0:
# Apply NMS on the remaining points
buffer[:] = 0
buffer[tuple(ij)] = s[keep] # scores or scale
local_max = torch.nn.functional.max_pool2d(
torch.from_numpy(buffer).unsqueeze(0),
kernel_size=nms_radius * 2 + 1,
stride=1,
padding=nms_radius,
).squeeze(0)
is_local_max = buffer == local_max.numpy()
keep = keep[is_local_max[tuple(ij)]]
return keep
def sift_to_rootsift(x: torch.Tensor, eps=1e-6) -> torch.Tensor:
x = torch.nn.functional.normalize(x, p=1, dim=-1, eps=eps)
x.clip_(min=eps).sqrt_()
return torch.nn.functional.normalize(x, p=2, dim=-1, eps=eps)
def run_opencv_sift(features: cv2.Feature2D, image: np.ndarray) -> np.ndarray:
"""
Detect keypoints using OpenCV Detector.
Optionally, perform description.
Args:
features: OpenCV based keypoints detector and descriptor
image: Grayscale image of uint8 data type
Returns:
keypoints: 1D array of detected cv2.KeyPoint
scores: 1D array of responses
descriptors: 1D array of descriptors
"""
detections, descriptors = features.detectAndCompute(image, None)
points = np.array([k.pt for k in detections], dtype=np.float32)
scores = np.array([k.response for k in detections], dtype=np.float32)
scales = np.array([k.size for k in detections], dtype=np.float32)
angles = np.deg2rad(
np.array([k.angle for k in detections], dtype=np.float32)
)
return points, scores, scales, angles, descriptors
class SIFT(BaseModel):
default_conf = {
"rootsift": True,
"nms_radius": 0, # None to disable filtering entirely.
"max_keypoints": 4096,
"backend": "opencv", # in {opencv, pycolmap, pycolmap_cpu, pycolmap_cuda}
"detection_threshold": 0.0066667, # from COLMAP
"edge_threshold": 10,
"first_octave": -1, # only used by pycolmap, the default of COLMAP
"num_octaves": 4,
}
required_data_keys = ["image"]
def _init(self, conf):
self.conf = OmegaConf.create(self.conf)
backend = self.conf.backend
if backend.startswith("pycolmap"):
if pycolmap is None:
raise ImportError(
"Cannot find module pycolmap: install it with pip"
"or use backend=opencv."
)
options = {
"peak_threshold": self.conf.detection_threshold,
"edge_threshold": self.conf.edge_threshold,
"first_octave": self.conf.first_octave,
"num_octaves": self.conf.num_octaves,
"normalization": pycolmap.Normalization.L2, # L1_ROOT is buggy.
}
device = (
"auto"
if backend == "pycolmap"
else backend.replace("pycolmap_", "")
)
if (
backend == "pycolmap_cpu" or not pycolmap.has_cuda
) and pycolmap.__version__ < "0.5.0":
warnings.warn(
"The pycolmap CPU SIFT is buggy in version < 0.5.0, "
"consider upgrading pycolmap or use the CUDA version.",
stacklevel=1,
)
else:
options["max_num_features"] = self.conf.max_keypoints
self.sift = pycolmap.Sift(options=options, device=device)
elif backend == "opencv":
self.sift = cv2.SIFT_create(
contrastThreshold=self.conf.detection_threshold,
nfeatures=self.conf.max_keypoints,
edgeThreshold=self.conf.edge_threshold,
nOctaveLayers=self.conf.num_octaves,
)
else:
backends = {"opencv", "pycolmap", "pycolmap_cpu", "pycolmap_cuda"}
raise ValueError(
f"Unknown backend: {backend} not in "
f"{{{','.join(backends)}}}."
)
logger.info("Load SIFT model done.")
def extract_single_image(self, image: torch.Tensor):
image_np = image.cpu().numpy().squeeze(0)
if self.conf.backend.startswith("pycolmap"):
if version.parse(pycolmap.__version__) >= version.parse("0.5.0"):
detections, descriptors = self.sift.extract(image_np)
scores = None # Scores are not exposed by COLMAP anymore.
else:
detections, scores, descriptors = self.sift.extract(image_np)
keypoints = detections[:, :2] # Keep only (x, y).
scales, angles = detections[:, -2:].T
if scores is not None and (
self.conf.backend == "pycolmap_cpu" or not pycolmap.has_cuda
):
# Set the scores as a combination of abs. response and scale.
scores = np.abs(scores) * scales
elif self.conf.backend == "opencv":
# TODO: Check if opencv keypoints are already in corner convention
keypoints, scores, scales, angles, descriptors = run_opencv_sift(
self.sift, (image_np * 255.0).astype(np.uint8)
)
pred = {
"keypoints": keypoints,
"scales": scales,
"oris": angles,
"descriptors": descriptors,
}
if scores is not None:
pred["scores"] = scores
# sometimes pycolmap returns points outside the image. We remove them
if self.conf.backend.startswith("pycolmap"):
is_inside = (
pred["keypoints"] + 0.5 < np.array([image_np.shape[-2:][::-1]])
).all(-1)
pred = {k: v[is_inside] for k, v in pred.items()}
if self.conf.nms_radius is not None:
keep = filter_dog_point(
pred["keypoints"],
pred["scales"],
pred["oris"],
image_np.shape,
self.conf.nms_radius,
scores=pred.get("scores"),
)
pred = {k: v[keep] for k, v in pred.items()}
pred = {k: torch.from_numpy(v) for k, v in pred.items()}
if scores is not None:
# Keep the k keypoints with highest score
num_points = self.conf.max_keypoints
if num_points is not None and len(pred["keypoints"]) > num_points:
indices = torch.topk(pred["scores"], num_points).indices
pred = {k: v[indices] for k, v in pred.items()}
return pred
def _forward(self, data: dict) -> dict:
image = data["image"]
if image.shape[1] == 3:
image = rgb_to_grayscale(image)
device = image.device
image = image.cpu()
pred = []
for k in range(len(image)):
img = image[k]
if "image_size" in data.keys():
# avoid extracting points in padded areas
w, h = data["image_size"][k]
img = img[:, :h, :w]
p = self.extract_single_image(img)
pred.append(p)
pred = {
k: torch.stack([p[k] for p in pred], 0).to(device) for k in pred[0]
}
if self.conf.rootsift:
pred["descriptors"] = sift_to_rootsift(pred["descriptors"])
pred["descriptors"] = pred["descriptors"].permute(0, 2, 1)
pred["keypoint_scores"] = pred["scores"].clone()
return pred
|