Spaces:
Sleeping
Sleeping
File size: 11,976 Bytes
e02ffe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from collections import defaultdict
import pprint
from loguru import logger
from pathlib import Path
import torch
import numpy as np
import pytorch_lightning as pl
from matplotlib import pyplot as plt
from src.loftr import LoFTR
# from src.loftr.utils.supervision import compute_supervision_coarse, compute_supervision_fine
# from src.losses.loftr_loss import LoFTRLoss
from src.optimizers import build_optimizer, build_scheduler
from src.utils.metrics import (
compute_symmetrical_epipolar_errors,
compute_pose_errors,
aggregate_metrics
)
from src.utils.plotting import make_matching_figures
from src.utils.comm import gather, all_gather
from src.utils.misc import lower_config, flattenList
from src.utils.profiler import PassThroughProfiler
from torch.profiler import profile
def reparameter(matcher):
module = matcher.backbone.layer0
if hasattr(module, 'switch_to_deploy'):
module.switch_to_deploy()
for modules in [matcher.backbone.layer1, matcher.backbone.layer2, matcher.backbone.layer3]:
for module in modules:
if hasattr(module, 'switch_to_deploy'):
module.switch_to_deploy()
for modules in [matcher.fine_preprocess.layer2_outconv2, matcher.fine_preprocess.layer1_outconv2]:
for module in modules:
if hasattr(module, 'switch_to_deploy'):
module.switch_to_deploy()
return matcher
class PL_LoFTR(pl.LightningModule):
def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None):
"""
TODO:
- use the new version of PL logging API.
"""
super().__init__()
# Misc
self.config = config # full config
_config = lower_config(self.config)
self.loftr_cfg = lower_config(_config['loftr'])
self.profiler = profiler or PassThroughProfiler()
self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1)
# Matcher: LoFTR
self.matcher = LoFTR(config=_config['loftr'], profiler=self.profiler)
# self.loss = LoFTRLoss(_config)
# Pretrained weights
if pretrained_ckpt:
state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict']
msg=self.matcher.load_state_dict(state_dict, strict=False)
logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint")
# Testing
self.warmup = False
self.reparameter = False
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
self.total_ms = 0
def configure_optimizers(self):
# FIXME: The scheduler did not work properly when `--resume_from_checkpoint`
optimizer = build_optimizer(self, self.config)
scheduler = build_scheduler(self.config, optimizer)
return [optimizer], [scheduler]
def optimizer_step(
self, epoch, batch_idx, optimizer, optimizer_idx,
optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
# learning rate warm up
warmup_step = self.config.TRAINER.WARMUP_STEP
if self.trainer.global_step < warmup_step:
if self.config.TRAINER.WARMUP_TYPE == 'linear':
base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR
lr = base_lr + \
(self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \
abs(self.config.TRAINER.TRUE_LR - base_lr)
for pg in optimizer.param_groups:
pg['lr'] = lr
elif self.config.TRAINER.WARMUP_TYPE == 'constant':
pass
else:
raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}')
# update params
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
def _trainval_inference(self, batch):
with self.profiler.profile("Compute coarse supervision"):
with torch.autocast(enabled=False, device_type='cuda'):
compute_supervision_coarse(batch, self.config)
with self.profiler.profile("LoFTR"):
with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
self.matcher(batch)
with self.profiler.profile("Compute fine supervision"):
with torch.autocast(enabled=False, device_type='cuda'):
compute_supervision_fine(batch, self.config, self.logger)
with self.profiler.profile("Compute losses"):
with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
self.loss(batch)
def _compute_metrics(self, batch):
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match
compute_pose_errors(batch, self.config) # compute R_errs, t_errs, pose_errs for each pair
rel_pair_names = list(zip(*batch['pair_names']))
bs = batch['image0'].size(0)
metrics = {
# to filter duplicate pairs caused by DistributedSampler
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
'epi_errs': [(batch['epi_errs'].reshape(-1,1))[batch['m_bids'] == b].reshape(-1).cpu().numpy() for b in range(bs)],
'R_errs': batch['R_errs'],
't_errs': batch['t_errs'],
'inliers': batch['inliers'],
'num_matches': [batch['mconf'].shape[0]], # batch size = 1 only
}
ret_dict = {'metrics': metrics}
return ret_dict, rel_pair_names
def training_step(self, batch, batch_idx):
self._trainval_inference(batch)
# logging
if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0:
# scalars
for k, v in batch['loss_scalars'].items():
self.logger.experiment.add_scalar(f'train/{k}', v, self.global_step)
# figures
if self.config.TRAINER.ENABLE_PLOTTING:
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match
figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE)
for k, v in figures.items():
self.logger.experiment.add_figure(f'train_match/{k}', v, self.global_step)
return {'loss': batch['loss']}
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
if self.trainer.global_rank == 0:
self.logger.experiment.add_scalar(
'train/avg_loss_on_epoch', avg_loss,
global_step=self.current_epoch)
def validation_step(self, batch, batch_idx):
self._trainval_inference(batch)
ret_dict, _ = self._compute_metrics(batch)
val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1)
figures = {self.config.TRAINER.PLOT_MODE: []}
if batch_idx % val_plot_interval == 0:
figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE)
return {
**ret_dict,
'loss_scalars': batch['loss_scalars'],
'figures': figures,
}
def validation_epoch_end(self, outputs):
# handle multiple validation sets
multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs
multi_val_metrics = defaultdict(list)
for valset_idx, outputs in enumerate(multi_outputs):
# since pl performs sanity_check at the very begining of the training
cur_epoch = self.trainer.current_epoch
if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check:
cur_epoch = -1
# 1. loss_scalars: dict of list, on cpu
_loss_scalars = [o['loss_scalars'] for o in outputs]
loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]}
# 2. val metrics: dict of list, numpy
_metrics = [o['metrics'] for o in outputs]
metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config)
for thr in [5, 10, 20]:
multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}'])
# 3. figures
_figures = [o['figures'] for o in outputs]
figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]}
# tensorboard records only on rank 0
if self.trainer.global_rank == 0:
for k, v in loss_scalars.items():
mean_v = torch.stack(v).mean()
self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch)
for k, v in val_metrics_4tb.items():
self.logger.experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch)
for k, v in figures.items():
if self.trainer.global_rank == 0:
for plot_idx, fig in enumerate(v):
self.logger.experiment.add_figure(
f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True)
plt.close('all')
for thr in [5, 10, 20]:
# log on all ranks for ModelCheckpoint callback to work properly
self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}']))) # ckpt monitors on this
def test_step(self, batch, batch_idx):
if (self.config.LOFTR.BACKBONE_TYPE == 'RepVGG') and not self.reparameter:
self.matcher = reparameter(self.matcher)
if self.config.LOFTR.HALF:
self.matcher = self.matcher.eval().half()
self.reparameter = True
if not self.warmup:
if self.config.LOFTR.HALF:
for i in range(50):
self.matcher(batch)
else:
with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
for i in range(50):
self.matcher(batch)
self.warmup = True
torch.cuda.synchronize()
if self.config.LOFTR.HALF:
self.start_event.record()
self.matcher(batch)
self.end_event.record()
torch.cuda.synchronize()
self.total_ms += self.start_event.elapsed_time(self.end_event)
else:
with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
self.start_event.record()
self.matcher(batch)
self.end_event.record()
torch.cuda.synchronize()
self.total_ms += self.start_event.elapsed_time(self.end_event)
ret_dict, rel_pair_names = self._compute_metrics(batch)
return ret_dict
def test_epoch_end(self, outputs):
# metrics: dict of list, numpy
_metrics = [o['metrics'] for o in outputs]
metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}
# [{key: [{...}, *#bs]}, *#batch]
if self.trainer.global_rank == 0:
print('Averaged Matching time over 1500 pairs: {:.2f} ms'.format(self.total_ms / 1500))
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config)
logger.info('\n' + pprint.pformat(val_metrics_4tb)) |