Spaces:
Sleeping
Sleeping
File size: 10,732 Bytes
2c8b554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import matplotlib
import matplotlib.pyplot as plt
import os
import numpy as np
import torch
import torch.nn.functional as F
from lib.utils import (
grid_positions,
upscale_positions,
downscale_positions,
savefig,
imshow_image
)
from lib.exceptions import NoGradientError, EmptyTensorError
matplotlib.use('Agg')
def loss_function(
model, batch, device, margin=1, safe_radius=4, scaling_steps=3, plot=False, plot_path=None
):
output = model({
'image1': batch['image1'].to(device),
'image2': batch['image2'].to(device)
})
loss = torch.tensor(np.array([0], dtype=np.float32), device=device)
has_grad = False
n_valid_samples = 0
for idx_in_batch in range(batch['image1'].size(0)):
# Annotations
depth1 = batch['depth1'][idx_in_batch].to(device) # [h1, w1]
intrinsics1 = batch['intrinsics1'][idx_in_batch].to(device) # [3, 3]
pose1 = batch['pose1'][idx_in_batch].view(4, 4).to(device) # [4, 4]
bbox1 = batch['bbox1'][idx_in_batch].to(device) # [2]
depth2 = batch['depth2'][idx_in_batch].to(device)
intrinsics2 = batch['intrinsics2'][idx_in_batch].to(device)
pose2 = batch['pose2'][idx_in_batch].view(4, 4).to(device)
bbox2 = batch['bbox2'][idx_in_batch].to(device)
# Network output
dense_features1 = output['dense_features1'][idx_in_batch]
c, h1, w1 = dense_features1.size()
scores1 = output['scores1'][idx_in_batch].view(-1)
dense_features2 = output['dense_features2'][idx_in_batch]
_, h2, w2 = dense_features2.size()
scores2 = output['scores2'][idx_in_batch]
all_descriptors1 = F.normalize(dense_features1.view(c, -1), dim=0)
descriptors1 = all_descriptors1
all_descriptors2 = F.normalize(dense_features2.view(c, -1), dim=0)
# Warp the positions from image 1 to image 2
fmap_pos1 = grid_positions(h1, w1, device)
pos1 = upscale_positions(fmap_pos1, scaling_steps=scaling_steps)
try:
pos1, pos2, ids = warp(
pos1,
depth1, intrinsics1, pose1, bbox1,
depth2, intrinsics2, pose2, bbox2
)
except EmptyTensorError:
continue
fmap_pos1 = fmap_pos1[:, ids]
descriptors1 = descriptors1[:, ids]
scores1 = scores1[ids]
# Skip the pair if not enough GT correspondences are available
if ids.size(0) < 128:
continue
# Descriptors at the corresponding positions
fmap_pos2 = torch.round(
downscale_positions(pos2, scaling_steps=scaling_steps)
).long()
descriptors2 = F.normalize(
dense_features2[:, fmap_pos2[0, :], fmap_pos2[1, :]],
dim=0
)
positive_distance = 2 - 2 * (
descriptors1.t().unsqueeze(1) @ descriptors2.t().unsqueeze(2)
).squeeze()
all_fmap_pos2 = grid_positions(h2, w2, device)
position_distance = torch.max(
torch.abs(
fmap_pos2.unsqueeze(2).float() -
all_fmap_pos2.unsqueeze(1)
),
dim=0
)[0]
is_out_of_safe_radius = position_distance > safe_radius
distance_matrix = 2 - 2 * (descriptors1.t() @ all_descriptors2)
negative_distance2 = torch.min(
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
dim=1
)[0]
all_fmap_pos1 = grid_positions(h1, w1, device)
position_distance = torch.max(
torch.abs(
fmap_pos1.unsqueeze(2).float() -
all_fmap_pos1.unsqueeze(1)
),
dim=0
)[0]
is_out_of_safe_radius = position_distance > safe_radius
distance_matrix = 2 - 2 * (descriptors2.t() @ all_descriptors1)
negative_distance1 = torch.min(
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
dim=1
)[0]
diff = positive_distance - torch.min(
negative_distance1, negative_distance2
)
scores2 = scores2[fmap_pos2[0, :], fmap_pos2[1, :]]
loss = loss + (
torch.sum(scores1 * scores2 * F.relu(margin + diff)) /
torch.sum(scores1 * scores2)
)
has_grad = True
n_valid_samples += 1
# print(plot, batch['batch_idx'],batch['log_interval'])
if plot and batch['batch_idx'] % batch['log_interval'] == 0:
# print("should plot")
pos1_aux = pos1.cpu().numpy()
pos2_aux = pos2.cpu().numpy()
k = pos1_aux.shape[1]
col = np.random.rand(k, 3)
n_sp = 4
plt.figure()
plt.subplot(1, n_sp, 1)
im1 = imshow_image(
batch['image1'][idx_in_batch].cpu().numpy(),
preprocessing=batch['preprocessing']
)
plt.imshow(im1)
plt.scatter(
pos1_aux[1, :], pos1_aux[0, :],
s=0.25**2, c=col, marker=',', alpha=0.5
)
plt.axis('off')
plt.subplot(1, n_sp, 2)
plt.imshow(
output['scores1'][idx_in_batch].data.cpu().numpy(),
cmap='Reds'
)
plt.axis('off')
plt.subplot(1, n_sp, 3)
im2 = imshow_image(
batch['image2'][idx_in_batch].cpu().numpy(),
preprocessing=batch['preprocessing']
)
plt.imshow(im2)
plt.scatter(
pos2_aux[1, :], pos2_aux[0, :],
s=0.25**2, c=col, marker=',', alpha=0.5
)
plt.axis('off')
plt.subplot(1, n_sp, 4)
plt.imshow(
output['scores2'][idx_in_batch].data.cpu().numpy(),
cmap='Reds'
)
plt.axis('off')
savefig(os.path.join(plot_path, '%s.%02d.%02d.%d.png' % (
'train' if batch['train'] else 'valid',
batch['epoch_idx'],
batch['batch_idx'] // batch['log_interval'],
idx_in_batch
)), dpi=300)
plt.close()
if not has_grad:
raise NoGradientError
loss = loss / n_valid_samples
return loss
def interpolate_depth(pos, depth):
device = pos.device
ids = torch.arange(0, pos.size(1), device=device)
h, w = depth.size()
i = pos[0, :]
j = pos[1, :]
# Valid corners
i_top_left = torch.floor(i).long()
j_top_left = torch.floor(j).long()
valid_top_left = torch.min(i_top_left >= 0, j_top_left >= 0)
i_top_right = torch.floor(i).long()
j_top_right = torch.ceil(j).long()
valid_top_right = torch.min(i_top_right >= 0, j_top_right < w)
i_bottom_left = torch.ceil(i).long()
j_bottom_left = torch.floor(j).long()
valid_bottom_left = torch.min(i_bottom_left < h, j_bottom_left >= 0)
i_bottom_right = torch.ceil(i).long()
j_bottom_right = torch.ceil(j).long()
valid_bottom_right = torch.min(i_bottom_right < h, j_bottom_right < w)
valid_corners = torch.min(
torch.min(valid_top_left, valid_top_right),
torch.min(valid_bottom_left, valid_bottom_right)
)
i_top_left = i_top_left[valid_corners]
j_top_left = j_top_left[valid_corners]
i_top_right = i_top_right[valid_corners]
j_top_right = j_top_right[valid_corners]
i_bottom_left = i_bottom_left[valid_corners]
j_bottom_left = j_bottom_left[valid_corners]
i_bottom_right = i_bottom_right[valid_corners]
j_bottom_right = j_bottom_right[valid_corners]
ids = ids[valid_corners]
if ids.size(0) == 0:
raise EmptyTensorError
# Valid depth
valid_depth = torch.min(
torch.min(
depth[i_top_left, j_top_left] > 0,
depth[i_top_right, j_top_right] > 0
),
torch.min(
depth[i_bottom_left, j_bottom_left] > 0,
depth[i_bottom_right, j_bottom_right] > 0
)
)
i_top_left = i_top_left[valid_depth]
j_top_left = j_top_left[valid_depth]
i_top_right = i_top_right[valid_depth]
j_top_right = j_top_right[valid_depth]
i_bottom_left = i_bottom_left[valid_depth]
j_bottom_left = j_bottom_left[valid_depth]
i_bottom_right = i_bottom_right[valid_depth]
j_bottom_right = j_bottom_right[valid_depth]
ids = ids[valid_depth]
if ids.size(0) == 0:
raise EmptyTensorError
# Interpolation
i = i[ids]
j = j[ids]
dist_i_top_left = i - i_top_left.float()
dist_j_top_left = j - j_top_left.float()
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
w_top_right = (1 - dist_i_top_left) * dist_j_top_left
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
w_bottom_right = dist_i_top_left * dist_j_top_left
interpolated_depth = (
w_top_left * depth[i_top_left, j_top_left] +
w_top_right * depth[i_top_right, j_top_right] +
w_bottom_left * depth[i_bottom_left, j_bottom_left] +
w_bottom_right * depth[i_bottom_right, j_bottom_right]
)
pos = torch.cat([i.view(1, -1), j.view(1, -1)], dim=0)
return [interpolated_depth, pos, ids]
def uv_to_pos(uv):
return torch.cat([uv[1, :].view(1, -1), uv[0, :].view(1, -1)], dim=0)
def warp(
pos1,
depth1, intrinsics1, pose1, bbox1,
depth2, intrinsics2, pose2, bbox2
):
device = pos1.device
Z1, pos1, ids = interpolate_depth(pos1, depth1)
# COLMAP convention
u1 = pos1[1, :] + bbox1[1] + .5
v1 = pos1[0, :] + bbox1[0] + .5
X1 = (u1 - intrinsics1[0, 2]) * (Z1 / intrinsics1[0, 0])
Y1 = (v1 - intrinsics1[1, 2]) * (Z1 / intrinsics1[1, 1])
XYZ1_hom = torch.cat([
X1.view(1, -1),
Y1.view(1, -1),
Z1.view(1, -1),
torch.ones(1, Z1.size(0), device=device)
], dim=0)
XYZ2_hom = torch.chain_matmul(pose2, torch.inverse(pose1), XYZ1_hom)
XYZ2 = XYZ2_hom[: -1, :] / XYZ2_hom[-1, :].view(1, -1)
uv2_hom = torch.matmul(intrinsics2, XYZ2)
uv2 = uv2_hom[: -1, :] / uv2_hom[-1, :].view(1, -1)
u2 = uv2[0, :] - bbox2[1] - .5
v2 = uv2[1, :] - bbox2[0] - .5
uv2 = torch.cat([u2.view(1, -1), v2.view(1, -1)], dim=0)
annotated_depth, pos2, new_ids = interpolate_depth(uv_to_pos(uv2), depth2)
ids = ids[new_ids]
pos1 = pos1[:, new_ids]
estimated_depth = XYZ2[2, new_ids]
inlier_mask = torch.abs(estimated_depth - annotated_depth) < 0.05
ids = ids[inlier_mask]
if ids.size(0) == 0:
raise EmptyTensorError
pos2 = pos2[:, inlier_mask]
pos1 = pos1[:, inlier_mask]
return pos1, pos2, ids
|