Spaces:
Sleeping
Sleeping
File size: 8,324 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> vis_seg
@IDE PyCharm
@Author [email protected]
@Date 07/02/2024 11:06
=================================================='''
import cv2
import numpy as np
from copy import deepcopy
def myHash(text: str):
hash = 0
for ch in text:
hash = (hash * 7879 ^ ord(ch) * 5737) & 0xFFFFFFFF
return hash
def generate_color_dic(n_seg=1000):
out = {}
for i in range(n_seg + 1):
sid = i
if sid == 0:
color = (0, 0, 255) # [b, g, r]
else:
# rgb_new = hash(str(sid * 319993))
rgb_new = myHash(str(sid * 319993))
r = (rgb_new & 0xFF0000) >> 16
g = (rgb_new & 0x00FF00) >> 8
b = rgb_new & 0x0000FF
color = (b, g, r)
out[i] = color
return out
def vis_seg_point(img, kpts, segs=None, seg_color=None, radius=7, thickness=-1):
outimg = deepcopy(img)
for i in range(kpts.shape[0]):
# print(kpts[i])
if segs is not None and seg_color is not None:
color = seg_color[segs[i]]
else:
color = (0, 255, 0)
outimg = cv2.circle(outimg,
center=(int(kpts[i, 0]), int(kpts[i, 1])),
color=color,
radius=radius,
thickness=thickness, )
return outimg
def vis_corr_incorr_point(img, kpts, pred_segs, gt_segs, radius=7, thickness=-1):
outimg = deepcopy(img)
for i in range(kpts.shape[0]):
# print(kpts[i])
p_seg = pred_segs[i]
g_seg = gt_segs[i]
if p_seg == g_seg:
if g_seg != 0:
color = (0, 255, 0)
else:
color = (255, 0, 0)
else:
color = (0, 0, 255)
outimg = cv2.circle(outimg,
center=(int(kpts[i, 0]), int(kpts[i, 1])),
color=color,
radius=radius,
thickness=thickness, )
return outimg
def vis_inlier(img, kpts, inliers, radius=7, thickness=1, with_outlier=True):
outimg = deepcopy(img)
for i in range(kpts.shape[0]):
if not with_outlier:
if not inliers[i]:
continue
if inliers[i]:
color = (0, 255, 0)
else:
color = (0, 0, 255)
outimg = cv2.rectangle(outimg,
pt1=(int(kpts[i, 0] - radius), int(kpts[i, 1] - radius)),
pt2=(int(kpts[i, 0] + radius), int(kpts[i, 1] + radius)),
color=color,
thickness=thickness, )
return outimg
def vis_global_seg(cls, seg_color, radius=7, thickness=-1):
all_patches = []
for i in range(cls.shape[0]):
if cls[i] == 0:
continue
color = seg_color[i]
patch = np.zeros(shape=(radius, radius, 3), dtype=np.uint8)
patch[..., 0] = color[0]
patch[..., 1] = color[1]
patch[..., 2] = color[2]
all_patches.append(patch)
if len(all_patches) == 0:
color = seg_color[0]
patch = np.zeros(shape=(radius, radius, 3), dtype=np.uint8)
patch[..., 0] = color[0]
patch[..., 1] = color[1]
patch[..., 2] = color[2]
all_patches.append(patch)
return np.vstack(all_patches)
def plot_matches(img1, img2, pts1, pts2, inliers, radius=3, line_thickness=2, horizon=True, plot_outlier=False,
confs=None):
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
# r = 3
if horizon:
img_out = np.zeros((max([rows1, rows2]), cols1 + cols2, 3), dtype='uint8')
# Place the first image to the left
img_out[:rows1, :cols1] = img1
# Place the next image to the right of it
img_out[:rows2, cols1:] = img2 # np.dstack([img2, img2, img2])
for idx in range(inliers.shape[0]):
# if idx % 10 > 0:
# continue
if inliers[idx]:
color = (0, 255, 0)
else:
if not plot_outlier:
continue
color = (0, 0, 255)
pt1 = pts1[idx]
pt2 = pts2[idx]
if confs is not None:
nr = int(radius * confs[idx])
else:
nr = radius
img_out = cv2.circle(img_out, (int(pt1[0]), int(pt1[1])), nr, color, 2)
img_out = cv2.circle(img_out, (int(pt2[0]) + cols1, int(pt2[1])), nr, color, 2)
img_out = cv2.line(img_out, (int(pt1[0]), int(pt1[1])), (int(pt2[0]) + cols1, int(pt2[1])), color,
line_thickness)
else:
img_out = np.zeros((rows1 + rows2, max([cols1, cols2]), 3), dtype='uint8')
# Place the first image to the left
img_out[:rows1, :cols1] = img1
# Place the next image to the right of it
img_out[rows1:, :cols2] = img2 # np.dstack([img2, img2, img2])
for idx in range(inliers.shape[0]):
# print("idx: ", inliers[idx])
# if idx % 10 > 0:
# continue
if inliers[idx]:
color = (0, 255, 0)
else:
if not plot_outlier:
continue
color = (0, 0, 255)
if confs is not None:
nr = int(radius * confs[idx])
else:
nr = radius
pt1 = pts1[idx]
pt2 = pts2[idx]
img_out = cv2.circle(img_out, (int(pt1[0]), int(pt1[1])), nr, color, 2)
img_out = cv2.circle(img_out, (int(pt2[0]), int(pt2[1]) + rows1), nr, color, 2)
img_out = cv2.line(img_out, (int(pt1[0]), int(pt1[1])), (int(pt2[0]), int(pt2[1]) + rows1), color,
line_thickness)
return img_out
def plot_kpts(img, kpts, radius=None, colors=None, r=3, color=(0, 0, 255), nh=-1, nw=-1, shape='o', show_text=None,
thickness=5):
img_out = deepcopy(img)
for i in range(kpts.shape[0]):
pt = kpts[i]
if radius is not None:
if shape == 'o':
img_out = cv2.circle(img_out, center=(int(pt[0]), int(pt[1])), radius=radius[i],
color=color if colors is None else colors[i],
thickness=thickness)
elif shape == '+':
img_out = cv2.line(img_out, pt1=(int(pt[0] - radius[i]), int(pt[1])),
pt2=(int(pt[0] + radius[i]), int(pt[1])),
color=color if colors is None else colors[i],
thickness=5)
img_out = cv2.line(img_out, pt1=(int(pt[0]), int(pt[1] - radius[i])),
pt2=(int(pt[0]), int(pt[1] + radius[i])), color=color,
thickness=thickness)
else:
if shape == 'o':
img_out = cv2.circle(img_out, center=(int(pt[0]), int(pt[1])), radius=r,
color=color if colors is None else colors[i],
thickness=thickness)
elif shape == '+':
img_out = cv2.line(img_out, pt1=(int(pt[0] - r), int(pt[1])),
pt2=(int(pt[0] + r), int(pt[1])), color=color if colors is None else colors[i],
thickness=thickness)
img_out = cv2.line(img_out, pt1=(int(pt[0]), int(pt[1] - r)),
pt2=(int(pt[0]), int(pt[1] + r)), color=color if colors is None else colors[i],
thickness=thickness)
if show_text is not None:
img_out = cv2.putText(img_out, show_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2,
(0, 0, 255), 3)
if nh == -1 and nw == -1:
return img_out
if nh > 0:
return cv2.resize(img_out, dsize=(int(img.shape[1] / img.shape[0] * nh), nh))
if nw > 0:
return cv2.resize(img_out, dsize=(nw, int(img.shape[0] / img.shape[1] * nw)))
|