Spaces:
Sleeping
Sleeping
import glob | |
import logging | |
import os | |
from pathlib import Path | |
import numpy as np | |
from ...utils.parsers import parse_retrieval | |
from ...utils.read_write_model import ( | |
Camera, | |
Image, | |
qvec2rotmat, | |
rotmat2qvec, | |
write_model, | |
) | |
logger = logging.getLogger(__name__) | |
def get_timestamps(files, idx): | |
"""Extract timestamps from a pose or relocalization file.""" | |
lines = [] | |
for p in files.parent.glob(files.name): | |
with open(p) as f: | |
lines += f.readlines() | |
timestamps = set() | |
for line in lines: | |
line = line.rstrip("\n") | |
if line[0] == "#" or line == "": | |
continue | |
ts = line.replace(",", " ").split()[idx] | |
timestamps.add(ts) | |
return timestamps | |
def delete_unused_images(root, timestamps): | |
"""Delete all images in root if they are not contained in timestamps.""" | |
images = glob.glob((root / "**/*.png").as_posix(), recursive=True) | |
deleted = 0 | |
for image in images: | |
ts = Path(image).stem | |
if ts not in timestamps: | |
os.remove(image) | |
deleted += 1 | |
logger.info(f"Deleted {deleted} images in {root}.") | |
def camera_from_calibration_file(id_, path): | |
"""Create a COLMAP camera from an MLAD calibration file.""" | |
with open(path, "r") as f: | |
data = f.readlines() | |
model, fx, fy, cx, cy = data[0].split()[:5] | |
width, height = data[1].split() | |
assert model == "Pinhole" | |
model_name = "PINHOLE" | |
params = [float(i) for i in [fx, fy, cx, cy]] | |
camera = Camera( | |
id=id_, model=model_name, width=int(width), height=int(height), params=params | |
) | |
return camera | |
def parse_poses(path, colmap=False): | |
"""Parse a list of poses in COLMAP or MLAD quaternion convention.""" | |
poses = [] | |
with open(path) as f: | |
for line in f.readlines(): | |
line = line.rstrip("\n") | |
if line[0] == "#" or line == "": | |
continue | |
data = line.replace(",", " ").split() | |
ts, p = data[0], np.array(data[1:], float) | |
if colmap: | |
q, t = np.split(p, [4]) | |
else: | |
t, q = np.split(p, [3]) | |
q = q[[3, 0, 1, 2]] # xyzw to wxyz | |
R = qvec2rotmat(q) | |
poses.append((ts, R, t)) | |
return poses | |
def parse_relocalization(path, has_poses=False): | |
"""Parse a relocalization file, possibly with poses.""" | |
reloc = [] | |
with open(path) as f: | |
for line in f.readlines(): | |
line = line.rstrip("\n") | |
if line[0] == "#" or line == "": | |
continue | |
data = line.replace(",", " ").split() | |
out = data[:2] # ref_ts, q_ts | |
if has_poses: | |
assert len(data) == 9 | |
t, q = np.split(np.array(data[2:], float), [3]) | |
q = q[[3, 0, 1, 2]] # xyzw to wxyz | |
R = qvec2rotmat(q) | |
out += [R, t] | |
reloc.append(out) | |
return reloc | |
def build_empty_colmap_model(root, sfm_dir): | |
"""Build a COLMAP model with images and cameras only.""" | |
calibration = "Calibration/undistorted_calib_{}.txt" | |
cam0 = camera_from_calibration_file(0, root / calibration.format(0)) | |
cam1 = camera_from_calibration_file(1, root / calibration.format(1)) | |
cameras = {0: cam0, 1: cam1} | |
T_0to1 = np.loadtxt(root / "Calibration/undistorted_calib_stereo.txt") | |
poses = parse_poses(root / "poses.txt") | |
images = {} | |
id_ = 0 | |
for ts, R_cam0_to_w, t_cam0_to_w in poses: | |
R_w_to_cam0 = R_cam0_to_w.T | |
t_w_to_cam0 = -(R_w_to_cam0 @ t_cam0_to_w) | |
R_w_to_cam1 = T_0to1[:3, :3] @ R_w_to_cam0 | |
t_w_to_cam1 = T_0to1[:3, :3] @ t_w_to_cam0 + T_0to1[:3, 3] | |
for idx, (R_w_to_cam, t_w_to_cam) in enumerate( | |
zip([R_w_to_cam0, R_w_to_cam1], [t_w_to_cam0, t_w_to_cam1]) | |
): | |
image = Image( | |
id=id_, | |
qvec=rotmat2qvec(R_w_to_cam), | |
tvec=t_w_to_cam, | |
camera_id=idx, | |
name=f"cam{idx}/{ts}.png", | |
xys=np.zeros((0, 2), float), | |
point3D_ids=np.full(0, -1, int), | |
) | |
images[id_] = image | |
id_ += 1 | |
sfm_dir.mkdir(exist_ok=True, parents=True) | |
write_model(cameras, images, {}, path=str(sfm_dir), ext=".bin") | |
def generate_query_lists(timestamps, seq_dir, out_path): | |
"""Create a list of query images with intrinsics from timestamps.""" | |
cam0 = camera_from_calibration_file( | |
0, seq_dir / "Calibration/undistorted_calib_0.txt" | |
) | |
intrinsics = [cam0.model, cam0.width, cam0.height] + cam0.params | |
intrinsics = [str(p) for p in intrinsics] | |
data = map(lambda ts: " ".join([f"cam0/{ts}.png"] + intrinsics), timestamps) | |
with open(out_path, "w") as f: | |
f.write("\n".join(data)) | |
def generate_localization_pairs(sequence, reloc, num, ref_pairs, out_path): | |
"""Create the matching pairs for the localization. | |
We simply lookup the corresponding reference frame | |
and extract its `num` closest frames from the existing pair list. | |
""" | |
if "test" in sequence: | |
# hard pairs will be overwritten by easy ones if available | |
relocs = [str(reloc).replace("*", d) for d in ["hard", "moderate", "easy"]] | |
else: | |
relocs = [reloc] | |
query_to_ref_ts = {} | |
for reloc in relocs: | |
with open(reloc, "r") as f: | |
for line in f.readlines(): | |
line = line.rstrip("\n") | |
if line[0] == "#" or line == "": | |
continue | |
ref_ts, q_ts = line.split()[:2] | |
query_to_ref_ts[q_ts] = ref_ts | |
ts_to_name = "cam0/{}.png".format | |
ref_pairs = parse_retrieval(ref_pairs) | |
loc_pairs = [] | |
for q_ts, ref_ts in query_to_ref_ts.items(): | |
ref_name = ts_to_name(ref_ts) | |
selected = [ref_name] + ref_pairs[ref_name][: num - 1] | |
loc_pairs.extend([" ".join((ts_to_name(q_ts), s)) for s in selected]) | |
with open(out_path, "w") as f: | |
f.write("\n".join(loc_pairs)) | |
def prepare_submission(results, relocs, poses_path, out_dir): | |
"""Obtain relative poses from estimated absolute and reference poses.""" | |
gt_poses = parse_poses(poses_path) | |
all_T_ref0_to_w = {ts: (R, t) for ts, R, t in gt_poses} | |
pred_poses = parse_poses(results, colmap=True) | |
all_T_w_to_q0 = {Path(name).stem: (R, t) for name, R, t in pred_poses} | |
for reloc in relocs.parent.glob(relocs.name): | |
relative_poses = [] | |
reloc_ts = parse_relocalization(reloc) | |
for ref_ts, q_ts in reloc_ts: | |
R_w_to_q0, t_w_to_q0 = all_T_w_to_q0[q_ts] | |
R_ref0_to_w, t_ref0_to_w = all_T_ref0_to_w[ref_ts] | |
R_ref0_to_q0 = R_w_to_q0 @ R_ref0_to_w | |
t_ref0_to_q0 = R_w_to_q0 @ t_ref0_to_w + t_w_to_q0 | |
tvec = t_ref0_to_q0.tolist() | |
qvec = rotmat2qvec(R_ref0_to_q0)[[1, 2, 3, 0]] # wxyz to xyzw | |
out = [ref_ts, q_ts] + list(map(str, tvec)) + list(map(str, qvec)) | |
relative_poses.append(" ".join(out)) | |
out_path = out_dir / reloc.name | |
with open(out_path, "w") as f: | |
f.write("\n".join(relative_poses)) | |
logger.info(f"Submission file written to {out_path}.") | |
def evaluate_submission(submission_dir, relocs, ths=[0.1, 0.2, 0.5]): | |
"""Compute the relocalization recall from predicted and ground truth poses.""" | |
for reloc in relocs.parent.glob(relocs.name): | |
poses_gt = parse_relocalization(reloc, has_poses=True) | |
poses_pred = parse_relocalization(submission_dir / reloc.name, has_poses=True) | |
poses_pred = {(ref_ts, q_ts): (R, t) for ref_ts, q_ts, R, t in poses_pred} | |
error = [] | |
for ref_ts, q_ts, R_gt, t_gt in poses_gt: | |
R, t = poses_pred[(ref_ts, q_ts)] | |
e = np.linalg.norm(t - t_gt) | |
error.append(e) | |
error = np.array(error) | |
recall = [np.mean(error <= th) for th in ths] | |
s = f"Relocalization evaluation {submission_dir.name}/{reloc.name}\n" | |
s += " / ".join([f"{th:>7}m" for th in ths]) + "\n" | |
s += " / ".join([f"{100*r:>7.3f}%" for r in recall]) | |
logger.info(s) | |