Spaces:
Sleeping
Sleeping
""" | |
3D visualization based on plotly. | |
Works for a small number of points and cameras, might be slow otherwise. | |
1) Initialize a figure with `init_figure` | |
2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction | |
Written by Paul-Edouard Sarlin and Philipp Lindenberger. | |
""" | |
from typing import Optional | |
import numpy as np | |
import plotly.graph_objects as go | |
import pycolmap | |
def to_homogeneous(points): | |
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) | |
return np.concatenate([points, pad], axis=-1) | |
def init_figure(height: int = 800) -> go.Figure: | |
"""Initialize a 3D figure.""" | |
fig = go.Figure() | |
axes = dict( | |
visible=False, | |
showbackground=False, | |
showgrid=False, | |
showline=False, | |
showticklabels=True, | |
autorange=True, | |
) | |
fig.update_layout( | |
template="plotly_dark", | |
height=height, | |
scene_camera=dict( | |
eye=dict(x=0.0, y=-0.1, z=-2), | |
up=dict(x=0, y=-1.0, z=0), | |
projection=dict(type="orthographic"), | |
), | |
scene=dict( | |
xaxis=axes, | |
yaxis=axes, | |
zaxis=axes, | |
aspectmode="data", | |
dragmode="orbit", | |
), | |
margin=dict(l=0, r=0, b=0, t=0, pad=0), | |
legend=dict(orientation="h", yanchor="top", y=0.99, xanchor="left", x=0.1), | |
) | |
return fig | |
def plot_points( | |
fig: go.Figure, | |
pts: np.ndarray, | |
color: str = "rgba(255, 0, 0, 1)", | |
ps: int = 2, | |
colorscale: Optional[str] = None, | |
name: Optional[str] = None, | |
): | |
"""Plot a set of 3D points.""" | |
x, y, z = pts.T | |
tr = go.Scatter3d( | |
x=x, | |
y=y, | |
z=z, | |
mode="markers", | |
name=name, | |
legendgroup=name, | |
marker=dict(size=ps, color=color, line_width=0.0, colorscale=colorscale), | |
) | |
fig.add_trace(tr) | |
def plot_camera( | |
fig: go.Figure, | |
R: np.ndarray, | |
t: np.ndarray, | |
K: np.ndarray, | |
color: str = "rgb(0, 0, 255)", | |
name: Optional[str] = None, | |
legendgroup: Optional[str] = None, | |
fill: bool = False, | |
size: float = 1.0, | |
text: Optional[str] = None, | |
): | |
"""Plot a camera frustum from pose and intrinsic matrix.""" | |
W, H = K[0, 2] * 2, K[1, 2] * 2 | |
corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]]) | |
if size is not None: | |
image_extent = max(size * W / 1024.0, size * H / 1024.0) | |
world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5 | |
scale = 0.5 * image_extent / world_extent | |
else: | |
scale = 1.0 | |
corners = to_homogeneous(corners) @ np.linalg.inv(K).T | |
corners = (corners / 2 * scale) @ R.T + t | |
legendgroup = legendgroup if legendgroup is not None else name | |
x, y, z = np.concatenate(([t], corners)).T | |
i = [0, 0, 0, 0] | |
j = [1, 2, 3, 4] | |
k = [2, 3, 4, 1] | |
if fill: | |
pyramid = go.Mesh3d( | |
x=x, | |
y=y, | |
z=z, | |
color=color, | |
i=i, | |
j=j, | |
k=k, | |
legendgroup=legendgroup, | |
name=name, | |
showlegend=False, | |
hovertemplate=text.replace("\n", "<br>"), | |
) | |
fig.add_trace(pyramid) | |
triangles = np.vstack((i, j, k)).T | |
vertices = np.concatenate(([t], corners)) | |
tri_points = np.array([vertices[i] for i in triangles.reshape(-1)]) | |
x, y, z = tri_points.T | |
pyramid = go.Scatter3d( | |
x=x, | |
y=y, | |
z=z, | |
mode="lines", | |
legendgroup=legendgroup, | |
name=name, | |
line=dict(color=color, width=1), | |
showlegend=False, | |
hovertemplate=text.replace("\n", "<br>"), | |
) | |
fig.add_trace(pyramid) | |
def plot_camera_colmap( | |
fig: go.Figure, | |
image: pycolmap.Image, | |
camera: pycolmap.Camera, | |
name: Optional[str] = None, | |
**kwargs | |
): | |
"""Plot a camera frustum from PyCOLMAP objects""" | |
world_t_camera = image.cam_from_world.inverse() | |
plot_camera( | |
fig, | |
world_t_camera.rotation.matrix(), | |
world_t_camera.translation, | |
camera.calibration_matrix(), | |
name=name or str(image.image_id), | |
text=str(image), | |
**kwargs | |
) | |
def plot_cameras(fig: go.Figure, reconstruction: pycolmap.Reconstruction, **kwargs): | |
"""Plot a camera as a cone with camera frustum.""" | |
for image_id, image in reconstruction.images.items(): | |
plot_camera_colmap( | |
fig, image, reconstruction.cameras[image.camera_id], **kwargs | |
) | |
def plot_reconstruction( | |
fig: go.Figure, | |
rec: pycolmap.Reconstruction, | |
max_reproj_error: float = 6.0, | |
color: str = "rgb(0, 0, 255)", | |
name: Optional[str] = None, | |
min_track_length: int = 2, | |
points: bool = True, | |
cameras: bool = True, | |
points_rgb: bool = True, | |
cs: float = 1.0, | |
): | |
# Filter outliers | |
bbs = rec.compute_bounding_box(0.001, 0.999) | |
# Filter points, use original reproj error here | |
p3Ds = [ | |
p3D | |
for _, p3D in rec.points3D.items() | |
if ( | |
(p3D.xyz >= bbs[0]).all() | |
and (p3D.xyz <= bbs[1]).all() | |
and p3D.error <= max_reproj_error | |
and p3D.track.length() >= min_track_length | |
) | |
] | |
xyzs = [p3D.xyz for p3D in p3Ds] | |
if points_rgb: | |
pcolor = [p3D.color for p3D in p3Ds] | |
else: | |
pcolor = color | |
if points: | |
plot_points(fig, np.array(xyzs), color=pcolor, ps=1, name=name) | |
if cameras: | |
plot_cameras(fig, rec, color=color, legendgroup=name, size=cs) | |