Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import torch | |
import numpy as np | |
import os, time, random | |
import argparse | |
from torch.utils.data import Dataset, DataLoader | |
from PIL import Image as PILImage | |
from glob import glob | |
from tqdm import tqdm | |
from model.model import InvISPNet | |
from dataset.FiveK_dataset import FiveKDatasetTest | |
from config.config import get_arguments | |
from utils.JPEG import DiffJPEG | |
from utils.commons import denorm, preprocess_test_patch | |
os.system("nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp") | |
os.environ["CUDA_VISIBLE_DEVICES"] = str( | |
np.argmax([int(x.split()[2]) for x in open("tmp", "r").readlines()]) | |
) | |
# os.environ['CUDA_VISIBLE_DEVICES'] = '7' | |
os.system("rm tmp") | |
DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda() | |
parser = get_arguments() | |
parser.add_argument("--ckpt", type=str, help="Checkpoint path.") | |
parser.add_argument( | |
"--out_path", type=str, default="./exps/", help="Path to save checkpoint. " | |
) | |
parser.add_argument( | |
"--split_to_patch", | |
dest="split_to_patch", | |
action="store_true", | |
help="Test on patch. ", | |
) | |
args = parser.parse_args() | |
print("Parsed arguments: {}".format(args)) | |
ckpt_name = args.ckpt.split("/")[-1].split(".")[0] | |
if args.split_to_patch: | |
os.makedirs( | |
args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name), exist_ok=True | |
) | |
out_path = args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name) | |
else: | |
os.makedirs( | |
args.out_path + "%s/results_%s/" % (args.task, ckpt_name), exist_ok=True | |
) | |
out_path = args.out_path + "%s/results_%s/" % (args.task, ckpt_name) | |
def main(args): | |
# ======================================define the model============================================ | |
net = InvISPNet(channel_in=3, channel_out=3, block_num=8) | |
device = torch.device("cuda:0") | |
net.to(device) | |
net.eval() | |
# load the pretrained weight if there exists one | |
if os.path.isfile(args.ckpt): | |
net.load_state_dict(torch.load(args.ckpt), strict=False) | |
print("[INFO] Loaded checkpoint: {}".format(args.ckpt)) | |
print("[INFO] Start data load and preprocessing") | |
RAWDataset = FiveKDatasetTest(opt=args) | |
dataloader = DataLoader( | |
RAWDataset, batch_size=1, shuffle=False, num_workers=0, drop_last=True | |
) | |
input_RGBs = sorted(glob(out_path + "pred*jpg")) | |
input_RGBs_names = [path.split("/")[-1].split(".")[0][5:] for path in input_RGBs] | |
print("[INFO] Start test...") | |
for i_batch, sample_batched in enumerate(tqdm(dataloader)): | |
step_time = time.time() | |
input, target_rgb, target_raw = ( | |
sample_batched["input_raw"].to(device), | |
sample_batched["target_rgb"].to(device), | |
sample_batched["target_raw"].to(device), | |
) | |
file_name = sample_batched["file_name"][0] | |
if args.split_to_patch: | |
input_list, target_rgb_list, target_raw_list = preprocess_test_patch( | |
input, target_rgb, target_raw | |
) | |
else: | |
# remove [:,:,::2,::2] if you have enough GPU memory to test the full resolution | |
input_list, target_rgb_list, target_raw_list = ( | |
[input[:, :, ::2, ::2]], | |
[target_rgb[:, :, ::2, ::2]], | |
[target_raw[:, :, ::2, ::2]], | |
) | |
for i_patch in range(len(input_list)): | |
file_name_patch = file_name + "_%05d" % i_patch | |
idx = input_RGBs_names.index(file_name_patch) | |
input_RGB_path = input_RGBs[idx] | |
input_RGB = ( | |
torch.from_numpy(np.array(PILImage.open(input_RGB_path)) / 255.0) | |
.unsqueeze(0) | |
.permute(0, 3, 1, 2) | |
.float() | |
.to(device) | |
) | |
target_raw_patch = target_raw_list[i_patch] | |
with torch.no_grad(): | |
reconstruct_raw = net(input_RGB, rev=True) | |
pred_raw = reconstruct_raw.detach().permute(0, 2, 3, 1) | |
pred_raw = torch.clamp(pred_raw, 0, 1) | |
target_raw_patch = target_raw_patch.permute(0, 2, 3, 1) | |
pred_raw = denorm(pred_raw, 255) | |
target_raw_patch = denorm(target_raw_patch, 255) | |
pred_raw = pred_raw.cpu().numpy() | |
target_raw_patch = target_raw_patch.cpu().numpy().astype(np.float32) | |
raw_pred = PILImage.fromarray(np.uint8(pred_raw[0, :, :, 0])) | |
raw_tar_pred = PILImage.fromarray( | |
np.hstack( | |
( | |
np.uint8(target_raw_patch[0, :, :, 0]), | |
np.uint8(pred_raw[0, :, :, 0]), | |
) | |
) | |
) | |
raw_tar = PILImage.fromarray(np.uint8(target_raw_patch[0, :, :, 0])) | |
raw_pred.save(out_path + "raw_pred_%s_%05d.jpg" % (file_name, i_patch)) | |
raw_tar.save(out_path + "raw_tar_%s_%05d.jpg" % (file_name, i_patch)) | |
raw_tar_pred.save( | |
out_path + "raw_gt_pred_%s_%05d.jpg" % (file_name, i_patch) | |
) | |
np.save( | |
out_path + "raw_pred_%s_%05d.npy" % (file_name, i_patch), | |
pred_raw[0, :, :, :] / 255.0, | |
) | |
np.save( | |
out_path + "raw_tar_%s_%05d.npy" % (file_name, i_patch), | |
target_raw_patch[0, :, :, :] / 255.0, | |
) | |
del reconstruct_raw | |
if __name__ == "__main__": | |
torch.set_num_threads(4) | |
main(args) | |