Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import numpy as np | |
import h5py | |
import cv2 | |
from numpy.core.numeric import indices | |
import pyxis as px | |
from tqdm import trange | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.insert(0, ROOT_DIR) | |
from utils import evaluation_utils, train_utils | |
parser = argparse.ArgumentParser(description="checking training data.") | |
parser.add_argument("--meta_dir", type=str, default="dataset/valid") | |
parser.add_argument("--dataset_dir", type=str, default="dataset") | |
parser.add_argument("--desc_dir", type=str, default="desc") | |
parser.add_argument("--raw_dir", type=str, default="raw_data") | |
parser.add_argument("--desc_suffix", type=str, default="_root_1000.hdf5") | |
parser.add_argument("--vis_folder", type=str, default=None) | |
args = parser.parse_args() | |
if __name__ == "__main__": | |
if args.vis_folder is not None and not os.path.exists(args.vis_folder): | |
os.mkdir(args.vis_folder) | |
pair_num_list = np.loadtxt(os.path.join(args.meta_dir, "pair_num.txt"), dtype=str) | |
pair_seq_list, accu_pair_list = train_utils.parse_pair_seq(pair_num_list) | |
total_pair = int(pair_num_list[0, 1]) | |
total_inlier_rate, total_corr_num, total_incorr_num = [], [], [] | |
pair_num_list = pair_num_list[1:] | |
for index in trange(total_pair): | |
seq = pair_seq_list[index] | |
index_within_seq = index - accu_pair_list[seq] | |
with h5py.File(os.path.join(args.dataset_dir, seq, "info.h5py"), "r") as data: | |
corr = data["corr"][str(index_within_seq)][()] | |
corr1, corr2 = corr[:, 0], corr[:, 1] | |
incorr1, incorr2 = ( | |
data["incorr1"][str(index_within_seq)][()], | |
data["incorr2"][str(index_within_seq)][()], | |
) | |
img_path1, img_path2 = ( | |
data["img_path1"][str(index_within_seq)][()][0].decode(), | |
data["img_path2"][str(index_within_seq)][()][0].decode(), | |
) | |
img_name1, img_name2 = img_path1.split("/")[-1], img_path2.split("/")[-1] | |
fea_path1, fea_path2 = os.path.join( | |
args.desc_dir, seq, img_name1 + args.desc_suffix | |
), os.path.join(args.desc_dir, seq, img_name2 + args.desc_suffix) | |
with h5py.File(fea_path1, "r") as fea1, h5py.File(fea_path2, "r") as fea2: | |
desc1, kpt1 = fea1["descriptors"][()], fea1["keypoints"][()][:, :2] | |
desc2, kpt2 = fea2["descriptors"][()], fea2["keypoints"][()][:, :2] | |
sim_mat = desc1 @ desc2.T | |
nn_index1, nn_index2 = np.argmax(sim_mat, axis=1), np.argmax( | |
sim_mat, axis=0 | |
) | |
mask_mutual = (nn_index2[nn_index1] == np.arange(len(nn_index1)))[corr1] | |
mask_inlier = nn_index1[corr1] == corr2 | |
mask_nn_correct = np.logical_and(mask_mutual, mask_inlier) | |
# statistics | |
total_inlier_rate.append(mask_nn_correct.mean()) | |
total_corr_num.append(len(corr1)) | |
total_incorr_num.append((len(incorr1) + len(incorr2)) / 2) | |
# dump visualization | |
if args.vis_folder is not None: | |
# draw corr | |
img1, img2 = cv2.imread( | |
os.path.join(args.raw_dir, img_path1) | |
), cv2.imread(os.path.join(args.raw_dir, img_path2)) | |
corr1_pos, corr2_pos = np.take_along_axis( | |
kpt1, corr1[:, np.newaxis], axis=0 | |
), np.take_along_axis(kpt2, corr2[:, np.newaxis], axis=0) | |
dis_corr = evaluation_utils.draw_match(img1, img2, corr1_pos, corr2_pos) | |
cv2.imwrite( | |
os.path.join(args.vis_folder, str(index) + ".png"), dis_corr | |
) | |
# draw incorr | |
incorr1_pos, incorr2_pos = np.take_along_axis( | |
kpt1, incorr1[:, np.newaxis], axis=0 | |
), np.take_along_axis(kpt2, incorr2[:, np.newaxis], axis=0) | |
dis_incorr1, dis_incorr2 = evaluation_utils.draw_points( | |
img1, incorr1_pos | |
), evaluation_utils.draw_points(img2, incorr2_pos) | |
cv2.imwrite( | |
os.path.join(args.vis_folder, str(index) + "_incorr1.png"), | |
dis_incorr1, | |
) | |
cv2.imwrite( | |
os.path.join(args.vis_folder, str(index) + "_incorr2.png"), | |
dis_incorr2, | |
) | |
print("NN matching accuracy: ", np.asarray(total_inlier_rate).mean()) | |
print("mean corr number: ", np.asarray(total_corr_num).mean()) | |
print("mean incorr number: ", np.asarray(total_incorr_num).mean()) | |