Spaces:
Sleeping
Sleeping
from loguru import logger | |
import torch | |
import torch.nn as nn | |
class ASpanLoss(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config # config under the global namespace | |
self.loss_config = config["aspan"]["loss"] | |
self.match_type = self.config["aspan"]["match_coarse"]["match_type"] | |
self.sparse_spvs = self.config["aspan"]["match_coarse"]["sparse_spvs"] | |
self.flow_weight = self.config["aspan"]["loss"]["flow_weight"] | |
# coarse-level | |
self.correct_thr = self.loss_config["fine_correct_thr"] | |
self.c_pos_w = self.loss_config["pos_weight"] | |
self.c_neg_w = self.loss_config["neg_weight"] | |
# fine-level | |
self.fine_type = self.loss_config["fine_type"] | |
def compute_flow_loss(self, coarse_corr_gt, flow_list, h0, w0, h1, w1): | |
# coarse_corr_gt:[[batch_indices],[left_indices],[right_indices]] | |
# flow_list: [L,B,H,W,4] | |
loss1 = self.flow_loss_worker( | |
flow_list[0], coarse_corr_gt[0], coarse_corr_gt[1], coarse_corr_gt[2], w1 | |
) | |
loss2 = self.flow_loss_worker( | |
flow_list[1], coarse_corr_gt[0], coarse_corr_gt[2], coarse_corr_gt[1], w0 | |
) | |
total_loss = (loss1 + loss2) / 2 | |
return total_loss | |
def flow_loss_worker(self, flow, batch_indicies, self_indicies, cross_indicies, w): | |
bs, layer_num = flow.shape[1], flow.shape[0] | |
flow = flow.view(layer_num, bs, -1, 4) | |
gt_flow = torch.stack([cross_indicies % w, cross_indicies // w], dim=1) | |
total_loss_list = [] | |
for layer_index in range(layer_num): | |
cur_flow_list = flow[layer_index] | |
spv_flow = cur_flow_list[batch_indicies, self_indicies][:, :2] | |
spv_conf = cur_flow_list[batch_indicies, self_indicies][ | |
:, 2: | |
] # [#coarse,2] | |
l2_flow_dis = (gt_flow - spv_flow) ** 2 # [#coarse,2] | |
total_loss = spv_conf + torch.exp(-spv_conf) * l2_flow_dis # [#coarse,2] | |
total_loss_list.append(total_loss.mean()) | |
total_loss = torch.stack(total_loss_list, dim=-1) * self.flow_weight | |
return total_loss | |
def compute_coarse_loss(self, conf, conf_gt, weight=None): | |
"""Point-wise CE / Focal Loss with 0 / 1 confidence as gt. | |
Args: | |
conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1) | |
conf_gt (torch.Tensor): (N, HW0, HW1) | |
weight (torch.Tensor): (N, HW0, HW1) | |
""" | |
pos_mask, neg_mask = conf_gt == 1, conf_gt == 0 | |
c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w | |
# corner case: no gt coarse-level match at all | |
if not pos_mask.any(): # assign a wrong gt | |
pos_mask[0, 0, 0] = True | |
if weight is not None: | |
weight[0, 0, 0] = 0.0 | |
c_pos_w = 0.0 | |
if not neg_mask.any(): | |
neg_mask[0, 0, 0] = True | |
if weight is not None: | |
weight[0, 0, 0] = 0.0 | |
c_neg_w = 0.0 | |
if self.loss_config["coarse_type"] == "cross_entropy": | |
assert ( | |
not self.sparse_spvs | |
), "Sparse Supervision for cross-entropy not implemented!" | |
conf = torch.clamp(conf, 1e-6, 1 - 1e-6) | |
loss_pos = -torch.log(conf[pos_mask]) | |
loss_neg = -torch.log(1 - conf[neg_mask]) | |
if weight is not None: | |
loss_pos = loss_pos * weight[pos_mask] | |
loss_neg = loss_neg * weight[neg_mask] | |
return c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean() | |
elif self.loss_config["coarse_type"] == "focal": | |
conf = torch.clamp(conf, 1e-6, 1 - 1e-6) | |
alpha = self.loss_config["focal_alpha"] | |
gamma = self.loss_config["focal_gamma"] | |
if self.sparse_spvs: | |
pos_conf = ( | |
conf[:, :-1, :-1][pos_mask] | |
if self.match_type == "sinkhorn" | |
else conf[pos_mask] | |
) | |
loss_pos = -alpha * torch.pow(1 - pos_conf, gamma) * pos_conf.log() | |
# calculate losses for negative samples | |
if self.match_type == "sinkhorn": | |
neg0, neg1 = conf_gt.sum(-1) == 0, conf_gt.sum(1) == 0 | |
neg_conf = torch.cat( | |
[conf[:, :-1, -1][neg0], conf[:, -1, :-1][neg1]], 0 | |
) | |
loss_neg = -alpha * torch.pow(1 - neg_conf, gamma) * neg_conf.log() | |
else: | |
# These is no dustbin for dual_softmax, so we left unmatchable patches without supervision. | |
# we could also add 'pseudo negtive-samples' | |
pass | |
# handle loss weights | |
if weight is not None: | |
# Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out, | |
# but only through manually setting corresponding regions in sim_matrix to '-inf'. | |
loss_pos = loss_pos * weight[pos_mask] | |
if self.match_type == "sinkhorn": | |
neg_w0 = (weight.sum(-1) != 0)[neg0] | |
neg_w1 = (weight.sum(1) != 0)[neg1] | |
neg_mask = torch.cat([neg_w0, neg_w1], 0) | |
loss_neg = loss_neg[neg_mask] | |
loss = ( | |
c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean() | |
if self.match_type == "sinkhorn" | |
else c_pos_w * loss_pos.mean() | |
) | |
return loss | |
# positive and negative elements occupy similar propotions. => more balanced loss weights needed | |
else: # dense supervision (in the case of match_type=='sinkhorn', the dustbin is not supervised.) | |
loss_pos = ( | |
-alpha | |
* torch.pow(1 - conf[pos_mask], gamma) | |
* (conf[pos_mask]).log() | |
) | |
loss_neg = ( | |
-alpha | |
* torch.pow(conf[neg_mask], gamma) | |
* (1 - conf[neg_mask]).log() | |
) | |
if weight is not None: | |
loss_pos = loss_pos * weight[pos_mask] | |
loss_neg = loss_neg * weight[neg_mask] | |
return c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean() | |
# each negative element occupy a smaller propotion than positive elements. => higher negative loss weight needed | |
else: | |
raise ValueError( | |
"Unknown coarse loss: {type}".format( | |
type=self.loss_config["coarse_type"] | |
) | |
) | |
def compute_fine_loss(self, expec_f, expec_f_gt): | |
if self.fine_type == "l2_with_std": | |
return self._compute_fine_loss_l2_std(expec_f, expec_f_gt) | |
elif self.fine_type == "l2": | |
return self._compute_fine_loss_l2(expec_f, expec_f_gt) | |
else: | |
raise NotImplementedError() | |
def _compute_fine_loss_l2(self, expec_f, expec_f_gt): | |
""" | |
Args: | |
expec_f (torch.Tensor): [M, 2] <x, y> | |
expec_f_gt (torch.Tensor): [M, 2] <x, y> | |
""" | |
correct_mask = ( | |
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr | |
) | |
if correct_mask.sum() == 0: | |
if ( | |
self.training | |
): # this seldomly happen when training, since we pad prediction with gt | |
logger.warning("assign a false supervision to avoid ddp deadlock") | |
correct_mask[0] = True | |
else: | |
return None | |
flow_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1) | |
return flow_l2.mean() | |
def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt): | |
""" | |
Args: | |
expec_f (torch.Tensor): [M, 3] <x, y, std> | |
expec_f_gt (torch.Tensor): [M, 2] <x, y> | |
""" | |
# correct_mask tells you which pair to compute fine-loss | |
correct_mask = ( | |
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr | |
) | |
# use std as weight that measures uncertainty | |
std = expec_f[:, 2] | |
inverse_std = 1.0 / torch.clamp(std, min=1e-10) | |
weight = ( | |
inverse_std / torch.mean(inverse_std) | |
).detach() # avoid minizing loss through increase std | |
# corner case: no correct coarse match found | |
if not correct_mask.any(): | |
if ( | |
self.training | |
): # this seldomly happen during training, since we pad prediction with gt | |
# sometimes there is not coarse-level gt at all. | |
logger.warning("assign a false supervision to avoid ddp deadlock") | |
correct_mask[0] = True | |
weight[0] = 0.0 | |
else: | |
return None | |
# l2 loss with std | |
flow_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum(-1) | |
loss = (flow_l2 * weight[correct_mask]).mean() | |
return loss | |
def compute_c_weight(self, data): | |
"""compute element-wise weights for computing coarse-level loss.""" | |
if "mask0" in data: | |
c_weight = ( | |
data["mask0"].flatten(-2)[..., None] | |
* data["mask1"].flatten(-2)[:, None] | |
).float() | |
else: | |
c_weight = None | |
return c_weight | |
def forward(self, data): | |
""" | |
Update: | |
data (dict): update{ | |
'loss': [1] the reduced loss across a batch, | |
'loss_scalars' (dict): loss scalars for tensorboard_record | |
} | |
""" | |
loss_scalars = {} | |
# 0. compute element-wise loss weight | |
c_weight = self.compute_c_weight(data) | |
# 1. coarse-level loss | |
loss_c = self.compute_coarse_loss( | |
data["conf_matrix_with_bin"] | |
if self.sparse_spvs and self.match_type == "sinkhorn" | |
else data["conf_matrix"], | |
data["conf_matrix_gt"], | |
weight=c_weight, | |
) | |
loss = loss_c * self.loss_config["coarse_weight"] | |
loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()}) | |
# 2. fine-level loss | |
loss_f = self.compute_fine_loss(data["expec_f"], data["expec_f_gt"]) | |
if loss_f is not None: | |
loss += loss_f * self.loss_config["fine_weight"] | |
loss_scalars.update({"loss_f": loss_f.clone().detach().cpu()}) | |
else: | |
assert self.training is False | |
loss_scalars.update({"loss_f": torch.tensor(1.0)}) # 1 is the upper bound | |
# 3. flow loss | |
coarse_corr = [data["spv_b_ids"], data["spv_i_ids"], data["spv_j_ids"]] | |
loss_flow = self.compute_flow_loss( | |
coarse_corr, | |
data["predict_flow"], | |
data["hw0_c"][0], | |
data["hw0_c"][1], | |
data["hw1_c"][0], | |
data["hw1_c"][1], | |
) | |
loss_flow = loss_flow * self.flow_weight | |
for index, loss_off in enumerate(loss_flow): | |
loss_scalars.update( | |
{"loss_flow_" + str(index): loss_off.clone().detach().cpu()} | |
) # 1 is the upper bound | |
conf = data["predict_flow"][0][:, :, :, :, 2:] | |
layer_num = conf.shape[0] | |
for layer_index in range(layer_num): | |
loss_scalars.update( | |
{ | |
"conf_" | |
+ str(layer_index): conf[layer_index] | |
.mean() | |
.clone() | |
.detach() | |
.cpu() | |
} | |
) # 1 is the upper bound | |
loss += loss_flow.sum() | |
# print((loss_c * self.loss_config['coarse_weight']).data,loss_flow.data) | |
loss_scalars.update({"loss": loss.clone().detach().cpu()}) | |
data.update({"loss": loss, "loss_scalars": loss_scalars}) | |