Spaces:
Sleeping
Sleeping
from abc import ABCMeta, abstractmethod | |
import os | |
import h5py | |
import numpy as np | |
from tqdm import trange | |
from torch.multiprocessing import Pool, set_start_method | |
set_start_method("spawn", force=True) | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) | |
sys.path.insert(0, ROOT_DIR) | |
from components import load_component | |
class BaseDumper(metaclass=ABCMeta): | |
def __init__(self, config): | |
self.config = config | |
self.img_seq = [] | |
self.dump_seq = [] # feature dump seq | |
def get_seqs(self): | |
raise NotImplementedError | |
def format_dump_folder(self): | |
raise NotImplementedError | |
def format_dump_data(self): | |
raise NotImplementedError | |
def initialize(self): | |
self.extractor = load_component( | |
"extractor", self.config["extractor"]["name"], self.config["extractor"] | |
) | |
self.get_seqs() | |
self.format_dump_folder() | |
def extract(self, index): | |
img_path, dump_path = self.img_seq[index], self.dump_seq[index] | |
if not self.config["extractor"]["overwrite"] and os.path.exists(dump_path): | |
return | |
kp, desc = self.extractor.run(img_path) | |
self.write_feature(kp, desc, dump_path) | |
def dump_feature(self): | |
print("Extrating features...") | |
self.num_img = len(self.dump_seq) | |
pool = Pool(self.config["extractor"]["num_process"]) | |
iteration_num = self.num_img // self.config["extractor"]["num_process"] | |
if self.num_img % self.config["extractor"]["num_process"] != 0: | |
iteration_num += 1 | |
for index in trange(iteration_num): | |
indicies_list = range( | |
index * self.config["extractor"]["num_process"], | |
min( | |
(index + 1) * self.config["extractor"]["num_process"], self.num_img | |
), | |
) | |
pool.map(self.extract, indicies_list) | |
pool.close() | |
pool.join() | |
def write_feature(self, pts, desc, filename): | |
with h5py.File(filename, "w") as ifp: | |
ifp.create_dataset("keypoints", pts.shape, dtype=np.float32) | |
ifp.create_dataset("descriptors", desc.shape, dtype=np.float32) | |
ifp["keypoints"][:] = pts | |
ifp["descriptors"][:] = desc | |
def form_standard_dataset(self): | |
dataset_path = os.path.join( | |
self.config["dataset_dump_dir"], | |
self.config["data_name"] | |
+ "_" | |
+ self.config["extractor"]["name"] | |
+ "_" | |
+ str(self.config["extractor"]["num_kpt"]) | |
+ ".hdf5", | |
) | |
pair_data_type = ["K1", "K2", "R", "T", "e", "f"] | |
num_pairs = len(self.data["K1"]) | |
with h5py.File(dataset_path, "w") as f: | |
print("collecting pair info...") | |
for type in pair_data_type: | |
dg = f.create_group(type) | |
for idx in range(num_pairs): | |
data_item = np.asarray(self.data[type][idx]) | |
dg.create_dataset( | |
str(idx), data_item.shape, data_item.dtype, data=data_item | |
) | |
for type in ["img_path1", "img_path2"]: | |
dg = f.create_group(type) | |
for idx in range(num_pairs): | |
dg.create_dataset( | |
str(idx), | |
[1], | |
h5py.string_dtype(encoding="ascii"), | |
data=self.data[type][idx].encode("ascii"), | |
) | |
# dump desc | |
print("collecting desc and kpt...") | |
desc1_g, desc2_g, kpt1_g, kpt2_g = ( | |
f.create_group("desc1"), | |
f.create_group("desc2"), | |
f.create_group("kpt1"), | |
f.create_group("kpt2"), | |
) | |
for idx in trange(num_pairs): | |
desc_file1, desc_file2 = h5py.File( | |
self.data["fea_path1"][idx], "r" | |
), h5py.File(self.data["fea_path2"][idx], "r") | |
desc1, desc2, kpt1, kpt2 = ( | |
desc_file1["descriptors"][()], | |
desc_file2["descriptors"][()], | |
desc_file1["keypoints"][()], | |
desc_file2["keypoints"][()], | |
) | |
desc1_g.create_dataset(str(idx), desc1.shape, desc1.dtype, data=desc1) | |
desc2_g.create_dataset(str(idx), desc2.shape, desc2.dtype, data=desc2) | |
kpt1_g.create_dataset(str(idx), kpt1.shape, kpt1.dtype, data=kpt1) | |
kpt2_g.create_dataset(str(idx), kpt2.shape, kpt2.dtype, data=kpt2) | |