Spaces:
Running
Running
import torch | |
from DeDoDe import dedode_detector_L, dedode_descriptor_B | |
from DeDoDe.matchers.dual_softmax_matcher import DualSoftMaxMatcher | |
from DeDoDe.utils import * | |
from PIL import Image | |
import cv2 | |
def draw_matches(im_A, kpts_A, im_B, kpts_B): | |
kpts_A = [cv2.KeyPoint(x,y,1.) for x,y in kpts_A.cpu().numpy()] | |
kpts_B = [cv2.KeyPoint(x,y,1.) for x,y in kpts_B.cpu().numpy()] | |
matches_A_to_B = [cv2.DMatch(idx, idx, 0.) for idx in range(len(kpts_A))] | |
im_A, im_B = np.array(im_A), np.array(im_B) | |
ret = cv2.drawMatches(im_A, kpts_A, im_B, kpts_B, | |
matches_A_to_B, None) | |
return ret | |
detector = dedode_detector_L(weights = torch.load("dedode_detector_L.pth")) | |
descriptor = dedode_descriptor_B(weights = torch.load("dedode_descriptor_B.pth")) | |
matcher = DualSoftMaxMatcher() | |
im_A_path = "assets/im_A.jpg" | |
im_B_path = "assets/im_B.jpg" | |
im_A = Image.open(im_A_path) | |
im_B = Image.open(im_B_path) | |
W_A, H_A = im_A.size | |
W_B, H_B = im_B.size | |
detections_A = detector.detect_from_path(im_A_path, num_keypoints = 10_000) | |
keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"] | |
detections_B = detector.detect_from_path(im_B_path, num_keypoints = 10_000) | |
keypoints_B, P_B = detections_B["keypoints"], detections_B["confidence"] | |
description_A = descriptor.describe_keypoints_from_path(im_A_path, keypoints_A)["descriptions"] | |
description_B = descriptor.describe_keypoints_from_path(im_B_path, keypoints_B)["descriptions"] | |
matches_A, matches_B, batch_ids = matcher.match(keypoints_A, description_A, | |
keypoints_B, description_B, | |
P_A = P_A, P_B = P_B, | |
normalize = True, inv_temp=20, threshold = 0.1)#Increasing threshold -> fewer matches, fewer outliers | |
matches_A, matches_B = matcher.to_pixel_coords(matches_A, matches_B, H_A, W_A, H_B, W_B) | |
import cv2 | |
import numpy as np | |
Image.fromarray(draw_matches(im_A, matches_A[::5], im_B, matches_B[::5])).save("demo/matches.png") |